Let λ* be the largest value of λ for which the function f λ(x) =4λx³ -36λx² +36x +48 is increasing for all Then, f*(1) + f*(-1) is equal to

3 min read
61 views
Published July 21, 2025
Calculus
Differential Calculus
Monotonicity of Functions
Quadratic Inequalities

💡 Want to ask your own questions?

Get instant explanations with AI • Free trial

Detailed Explanation

1. Derivative gives the slope

For a function f(x)f(x) to be increasing on the entire real line R\mathbb R, its derivative must satisfy

f(x)0for all xR.f'(x) \ge 0 \quad \text{for all } x \in \mathbb R.

Given

fλ(x)=4λx336λx2+36x+48,f_\lambda(x)=4\lambda x^3-36\lambda x^2+36x+48,

we differentiate term-by-term:

fλ(x)=ddx(4λx3)ddx(36λx2)+ddx(36x)+ddx(48).f_\lambda'(x)=\frac{d}{dx}\left(4\lambda x^3\right)-\frac{d}{dx}\left(36\lambda x^2\right)+\frac{d}{dx}(36x)+\frac{d}{dx}(48).

Carrying it out:

fλ(x)=12λx272λx+36.f_\lambda'(x)=12\lambda x^2-72\lambda x+36.

To simplify analysis pull out a common factor of 12:

fλ(x)=12(λx26λx+3).f_\lambda'(x)=12\bigl(\lambda x^2-6\lambda x+3\bigr).

2. Force the quadratic to be non-negative everywhere

Because 12>012>0, the sign of fλ(x)f_\lambda'(x) is entirely controlled by the quadratic

g(x)=λx26λx+3.g(x)=\lambda x^2-6\lambda x+3.

A quadratic ax2+bx+cax^2+bx+c is non-negative for all real xx when:

  1. a>0a>0 (opens upward) and
  2. its discriminant satisfies Δ=b24ac0.\Delta=b^2-4ac\le 0.

For g(x)g(x):

  • a=λa=\lambda ⟹ we need λ>0\lambda>0.
  • b=6λ,  c=3b=-6\lambda, \; c=3.

Compute the discriminant:

Δ=(6λ)24(λ)(3)=36λ212λ=12λ(3λ1).\Delta=(-6\lambda)^2-4(\lambda)(3)=36\lambda^2-12\lambda=12\lambda\,(3\lambda-1).

Set Δ0\Delta\le 0:

12λ(3λ1)0.12\lambda\,(3\lambda-1)\le 0.

Because 12>012>0, divide by 1212 without changing the sign:

λ(3λ1)0.\lambda\,(3\lambda-1)\le 0.

With λ>0\lambda>0, the product is (\le 0) only when

3λ10λ13.3\lambda-1\le 0 \quad\Longrightarrow\quad \lambda\le\frac{1}{3}.

Hence the allowed interval is

0<λ13.0<\lambda\le \frac{1}{3}.

The largest such value is

λ=13.\boxed{\lambda^*=\dfrac{1}{3}}.

3. Evaluate fλ(1)f_{\lambda^*}(1) and fλ(1)f_{\lambda^*}(-1)

Substitute λ=13\lambda^*=\frac{1}{3} into the original function:

=\frac{4}{3}x^3-12x^2+36x+48.$$ Compute at $x=1$: $$\begin{aligned} f_{\frac13}(1)&=\frac{4}{3}(1)^3-12(1)^2+36(1)+48\\[4pt] &=\frac{4}{3}-12+36+48\\[4pt] &=\frac{4}{3}+72\\[4pt] &=\frac{220}{3}. \end{aligned}$$ Compute at $x=-1$: $$\begin{aligned} f_{\frac13}(-1)&=\frac{4}{3}(-1)^3-12(-1)^2+36(-1)+48\\[4pt] &= -\frac{4}{3}-12-36+48\\[4pt] &= -\frac{4}{3}+0\\[4pt] &= -\frac{4}{3}. \end{aligned}$$ ### 4. Final addition $$\begin{aligned} f_{\frac13}(1)+f_{\frac13}(-1) &= \frac{220}{3}-\frac{4}{3}\\[4pt] &= \frac{216}{3} = 72. \end{aligned}$$ Therefore, the required sum is $$\boxed{72}.$$

Simple Explanation (ELI5)

🧒🏼 What’s the problem saying?

We have a family of curves (think of many slides in a slide-show). Each slide is made by putting a number λ (lambda) into the formula

fλ(x)=4λx336λx2+36x+48.f_\lambda(x)=4\lambda x^3-36\lambda x^2+36x+48.

The question is:

  1. Pick the biggest λ for which the curve keeps climbing everywhere (never goes down).
  2. Take that special λ, plug it back into the formula, find the value at x=1x = 1 and at x=1x = -1, then add them.

🪜 How would a kid think of “always climbing”?

Imagine riding a bike on a road: if the road is always going upward, you never go downhill. Mathematicians call that the function being increasing everywhere. To check if a road always goes up we look at its slope (the derivative). If the slope is never negative, the road never goes down!

So we:

  1. Find the slope.
  2. Force it to stay positive for every spot on the road (every real xx).
  3. That gives the biggest safe λ.
  4. Finally do two easy plugs and one addition.

That’s the whole story! 🚲⬆️

👆 Found this helpful? Get personalized explanations for YOUR questions!

Step-by-Step Solution

Step-by-Step Solution

  1. Differentiate fλ(x)=4λx336λx2+36x+48f_\lambda(x)=4\lambda x^3-36\lambda x^2+36x+48 fλ(x)=12λx272λx+36=12(λx26λx+3).f_\lambda'(x)=12\lambda x^2-72\lambda x+36=12\bigl(\lambda x^2-6\lambda x+3\bigr).

  2. Require monotonic increase: fλ(x)0  xR    λx26λx+30  x.f_\lambda'(x)\ge0 \;\forall x \in \mathbb R\;\Longrightarrow\; \lambda x^2-6\lambda x+3\ge0 \;\forall x.

  3. Quadratic condition (opens upward and non-positive discriminant):

    • λ>0\lambda>0
    • Δ=36λ212λ0    12λ(3λ1)0    0<λ13\Delta=36\lambda^2-12\lambda\le0 \implies 12\lambda(3\lambda-1)\le0 \implies 0<\lambda\le\dfrac13.
  4. Largest acceptable value: λ=13.\lambda^*=\frac13.

  5. Evaluate at x=1x=1 and x=1x=-1 f13(x)=43x312x2+36x+48.f_{\frac13}(x)=\frac{4}{3}x^3-12x^2+36x+48. f13(1)=4312+36+48=2203,f_{\frac13}(1)=\frac{4}{3}-12+36+48=\frac{220}{3}, f13(1)=431236+48=43.f_{\frac13}(-1)=-\frac{4}{3}-12-36+48=-\frac{4}{3}.

  6. Add the two values f13(1)+f13(1)=220343=2163=72.f_{\frac13}(1)+f_{\frac13}(-1)=\frac{220}{3}-\frac{4}{3}=\frac{216}{3}=72.

[ \boxed{72} ]

Examples

Example 1

Designing shock absorbers: ensuring a damping function always dissipates energy (analogous to forcing its derivative to stay positive).

Example 2

Economics: keeping marginal cost non-negative for every production level to avoid unrealistic negative costs.

Example 3

Computer graphics: constraining a Bézier curve’s control parameter so the curve never bends downward.

Example 4

Population biology: choosing growth rate parameters so the population size function is always increasing.

Visual Representation

References

🤔 Have Your Own Question?

Get instant AI explanations in multiple languages with diagrams, examples, and step-by-step solutions!

AI-Powered Explanations
🎯Multiple Languages
📊Interactive Diagrams

No signup required • Try 3 questions free