The expression (sin(alpha + theta) - sin(alpha - theta))/(cos(beta - theta) - cos(beta + theta)) * is - (A) independent of a (C) independent of (B) independent of B (D) independent of a and B

2 min read
58 views
Published July 10, 2025
Mathematics
Trigonometry
Trigonometric Identities

💡 Want to ask your own questions?

Get instant explanations with AI • Free trial

Detailed Explanation

Key Identities to Know

  1. Sine difference identity
    sinAsinB=2cos(A+B2)sin(AB2)\sin A - \sin B = 2 \cos\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right)
  2. Cosine difference identity
    cosCcosD=2sin(C+D2)sin(CD2)\cos C - \cos D = -2 \sin\left(\frac{C+D}{2}\right) \sin\left(\frac{C-D}{2}\right)

Applying the Identities Step-by-Step

  1. Numerator
    Take A=α+θA = \alpha + \theta and B=αθB = \alpha - \theta

    sin(α+θ)sin(αθ)=2cos((α+θ)+(αθ)2)sin((α+θ)(αθ)2)\sin(\alpha + \theta) - \sin(\alpha - \theta) = 2\,\cos\left(\frac{(\alpha+\theta)+(\alpha-\theta)}{2}\right) \sin\left(\frac{(\alpha+\theta)-(\alpha-\theta)}{2}\right)

    Simplify inside the brackets: cos(α)sin(θ)\cos(\alpha)\,\sin(\theta) Multiplied by the 2 outside gives 2cos(α)sin(θ)2\cos(\alpha)\sin(\theta)

  2. Denominator
    Take C=βθC = \beta - \theta and D=β+θD = \beta + \theta

    cos(βθ)cos(β+θ)=2sin((βθ)+(β+θ)2)sin((βθ)(β+θ)2)\cos(\beta - \theta) - \cos(\beta + \theta) = -2\,\sin\left(\frac{(\beta-\theta)+(\beta+\theta)}{2}\right) \sin\left(\frac{(\beta-\theta)-(\beta+\theta)}{2}\right)

    First sine term becomes sin(β)\sin(\beta) and the second becomes sin(θ)=sin(θ)\sin(-\theta)= -\sin(\theta). The two minus signs cancel, giving 2sin(β)sin(θ)2\sin(\beta)\sin(\theta)

  3. Form the fraction
    2cos(α)sin(θ)2sin(β)sin(θ)=cos(α)sin(β)\frac{2\cos(\alpha)\sin(\theta)}{2\sin(\beta)\sin(\theta)} = \frac{\cos(\alpha)}{\sin(\beta)}

Notice sin(θ)\sin(\theta) cancels out completely. Therefore the final result depends only on α\alpha and β\beta, not on θ\theta.

Conclusion

The expression is independent of θ\theta. In the given option-pattern, that corresponds to choice (C).

Simple Explanation (ELI5)

Imagine you have two spinning wheels. One wheel is marked with the angle alpha (α) and you can nudge it forward or backward by another small angle theta (θ). You do the same with a second wheel marked beta (β). When you plug those spun-wheel readings into the funny fraction

   sin(α + θ) – sin(α – θ)
--------------------------------
   cos(β – θ) – cos(β + θ)

all the extra twirls of θ on both wheels mysteriously cancel each other out! What you’re left with only depends on how the wheels were marked at the start (α and β), not on how much you nudged them (θ). So the value of the whole fraction does not care about θ at all.

👆 Found this helpful? Get personalized explanations for YOUR questions!

Step-by-Step Solution

Step-by-Step Solution

  1. Numerator

    sin(α+θ)sin(αθ)=2cos((α+θ)+(αθ)2)sin((α+θ)(αθ)2)\sin(\alpha + \theta) - \sin(\alpha - \theta) = 2\cos\left(\frac{(\alpha+\theta)+(\alpha-\theta)}{2}\right) \sin\left(\frac{(\alpha+\theta)-(\alpha-\theta)}{2}\right)

    =2cos(α)sin(θ)= 2\cos(\alpha)\sin(\theta)

  2. Denominator

    cos(βθ)cos(β+θ)=2sin((βθ)+(β+θ)2)sin((βθ)(β+θ)2)\cos(\beta - \theta) - \cos(\beta + \theta) = -2\sin\left(\frac{(\beta-\theta)+(\beta+\theta)}{2}\right) \sin\left(\frac{(\beta-\theta)-(\beta+\theta)}{2}\right)

    =2sin(β)sin(θ)= -2\sin(\beta)\sin(-\theta)

    =2sin(β)sin(θ)= 2\sin(\beta)\sin(\theta)

  3. Form the ratio

    2cos(α)sin(θ)2sin(β)sin(θ)=2  cos(α)  sin(θ)2  sin(β)  sin(θ)=cosαsinβ\frac{2\cos(\alpha)\sin(\theta)}{2\sin(\beta)\sin(\theta)} = \frac{\cancel{2}\;\cos(\alpha)\;\cancel{\sin(\theta)}}{\cancel{2}\;\sin(\beta)\;\cancel{\sin(\theta)}} = \frac{\cos\alpha}{\sin\beta}

  4. Observation

    The final answer contains no θ\theta. Hence the value is independent of θ\theta.

Answer: (C) independent of θ\theta

Examples

Example 1

Radio wave interference calculations use the identity sin A − sin B to predict signal strength patterns.

Example 2

Optics: Determining bright and dark fringes in double-slit experiments involves similar sine and cosine difference identities.

Example 3

Mechanical vibrations: Adding two oscillations of close frequencies leverages sin–sin and cos–cos formulas to find beat frequency.

Visual Representation

References

🤔 Have Your Own Question?

Get instant AI explanations in multiple languages with diagrams, examples, and step-by-step solutions!

AI-Powered Explanations
🎯Multiple Languages
📊Interactive Diagrams

No signup required • Try 3 questions free