cos^6 (pi/16) + cos^6 ((3pi)/16) + cos^6 ((5pi)/16) + cos^6 ((7pi)/16) = 5/4

3 min read
61 views
Published July 21, 2025
Mathematics
Trigonometry
Multiple-angle identities
Algebra of trig sums

💡 Want to ask your own questions?

Get instant explanations with AI • Free trial

Detailed Explanation

1. Turning cos6θ\cos^6\theta into simpler pieces

The standard trick is to keep halving the power using

cos2θ=1+cos2θ2\cos^2\theta = \frac{1 + \cos 2\theta}{2}

After two halvings and a bit of algebra we get

cos6θ=10+15cos2θ+6cos4θ+cos6θ32\cos^6\theta = \frac{10 + 15\cos 2\theta + 6\cos 4\theta + \cos 6\theta}{32}

This converts a power into a sum of cosines with multiple angles.


2. Why do we choose exactly those four angles?

The angles

θ{π16,  3π16,  5π16,  7π16}\theta \in \left\{\frac{\pi}{16},\; \frac{3\pi}{16},\; \frac{5\pi}{16},\; \frac{7\pi}{16}\right\}

are equally spaced by π8\frac{\pi}{8} inside the first quadrant. When we double, quadruple, or sextuple them, we get sets that wrap perfectly around the unit circle, making their cosines pair up with opposite signs and cancel out.


3. Adding everything

Write the required sum as

S=k=03cos6 ⁣((2k+1)π16)S = \sum_{k=0}^{3} \cos^6\!\left(\frac{(2k+1)\pi}{16}\right)

Plug the expansion from Step 1 into each term:

S=132[1040+15cos2θ+6cos4θ+cos6θ]S = \frac{1}{32}\Bigg[\underbrace{\sum 10}_{40} + 15\sum \cos 2\theta + 6\sum \cos 4\theta + \sum \cos 6\theta \Bigg]

Because each grouped cosine sum equals zero (thanks to their symmetry), only the constant 40 survives, giving

S=4032=54S = \frac{40}{32} = \frac{5}{4}

That’s it!


What you learned

  • Power-reducing identities change high powers of trig functions into multiple-angle cosines.
  • Cleverly chosen angles can make most terms cancel, leaving only a simple constant.

Simple Explanation (ELI5)

What’s the problem?

We want to add four numbers that look scary:

  • cos6 ⁣(π16)\cos^6\!\left(\dfrac{\pi}{16}\right)
  • cos6 ⁣(3π16)\cos^6\!\left(\dfrac{3\pi}{16}\right)
  • cos6 ⁣(5π16)\cos^6\!\left(\dfrac{5\pi}{16}\right)
  • cos6 ⁣(7π16)\cos^6\!\left(\dfrac{7\pi}{16}\right)

Big idea (in kid-speak)

Imagine turning a big Lego block (the power 6) into many small bricks (powers 1 and 2). When we break the block correctly, most bricks cancel each other when we add them up. Only a few simple bricks stay, giving a very tidy answer.

  1. First, change cos6θ\cos^6\theta into a mix of cos(2θ)\cos(2\theta), cos(4θ)\cos(4\theta), cos(6θ)\cos(6\theta) and a plain number.
  2. Add all four angles together. Because the angles are nicely spaced, the parts with cos(2θ),  cos(4θ),  cos(6θ)\cos(2\theta),\;\cos(4\theta),\;\cos(6\theta) cancel (they add up to zero).
  3. What’s left is only the plain number part, which is super easy to add.

At the end, the scary sum is just 54\dfrac{5}{4}.

👆 Found this helpful? Get personalized explanations for YOUR questions!

Step-by-Step Solution

Step-by-step solution

  1. Use the power-reducing identity

    cos6θ=10+15cos2θ+6cos4θ+cos6θ32\cos^6\theta = \frac{10 + 15\cos 2\theta + 6\cos 4\theta + \cos 6\theta}{32}

  2. Write the desired sum

    S=cos6 ⁣(π16)+cos6 ⁣(3π16)+cos6 ⁣(5π16)+cos6 ⁣(7π16)S = \cos^6\!\left(\frac{\pi}{16}\right) + \cos^6\!\left(\frac{3\pi}{16}\right) + \cos^6\!\left(\frac{5\pi}{16}\right) + \cos^6\!\left(\frac{7\pi}{16}\right)

  3. Insert the expansion into each term

    + \frac{1}{32}\Big[10 + 15\cos \tfrac{3\pi}{8} + 6\cos \tfrac{3\pi}{4} + \cos \tfrac{9\pi}{8}\Big] \\ + \frac{1}{32}\Big[10 + 15\cos \tfrac{5\pi}{8} + 6\cos \tfrac{5\pi}{4} + \cos \tfrac{15\pi}{8}\Big] \\ + \frac{1}{32}\Big[10 + 15\cos \tfrac{7\pi}{8} + 6\cos \tfrac{7\pi}{4} + \cos \tfrac{21\pi}{8}\Big]$$
  4. Group like terms

    + 15\sum \cos 2\theta + 6\sum \cos 4\theta + \sum \cos 6\theta \Bigg]$$
  5. Evaluate each cosine sum

    • cos2θ=cosπ8+cos3π8+cos5π8+cos7π8=0\sum \cos 2\theta = \cos \tfrac{\pi}{8}+\cos \tfrac{3\pi}{8}+\cos \tfrac{5\pi}{8}+\cos \tfrac{7\pi}{8}=0
    • cos4θ=cosπ4+cos3π4+cos5π4+cos7π4=0\sum \cos 4\theta = \cos \tfrac{\pi}{4}+\cos \tfrac{3\pi}{4}+\cos \tfrac{5\pi}{4}+\cos \tfrac{7\pi}{4}=0
    • cos6θ=cos3π8+cos9π8+cos15π8+cos21π8=0\sum \cos 6\theta = \cos \tfrac{3\pi}{8}+\cos \tfrac{9\pi}{8}+\cos \tfrac{15\pi}{8}+\cos \tfrac{21\pi}{8}=0
  6. Compute the final value

    S=132×40=4032=54S = \frac{1}{32}\times 40 = \frac{40}{32} = \boxed{\dfrac{5}{4}}

Examples

Example 1

Finding \sum \cos^4\theta for equally spaced angles

Example 2

Using symmetry of sines/cosines in phasor addition for electrical engineering

Example 3

Evaluating integrals by expressing \sin^6 or \cos^6 as multiple-angle series

Example 4

Optics: averaging intensity when waves with phase offsets interfere

Visual Representation

References

🤔 Have Your Own Question?

Get instant AI explanations in multiple languages with diagrams, examples, and step-by-step solutions!

AI-Powered Explanations
🎯Multiple Languages
📊Interactive Diagrams

No signup required • Try 3 questions free