(c) (4cos^2 (9 deg) - 3)(4cos^2 (27 deg) - 3) = tan 9 deg

3 min read
57 views
Published July 21, 2025
Mathematics, Trigonometry, Angle-transformations
Mathematics, Trigonometry, Triple-angle identities
Mathematics, Algebraic manipulation
IIT-JEE

💡 Want to ask your own questions?

Get instant explanations with AI • Free trial

Detailed Explanation

1. Triple-Angle Identity Refresher

For any angle θ\theta:

cos(3θ)=4cos3θ3cosθ\cos(3\theta) = 4\cos^3\theta - 3\cos\theta

Divide both sides by cosθ(0)\cos\theta \,(\neq 0) to get a very handy form:

4cos2θ3=cos(3θ)cosθ4\cos^2\theta - 3 = \frac{\cos(3\theta)}{\cos\theta}

2. Apply the Identity to Each Factor

  • First factor (θ=9°\theta = 9°): 4cos2(9°)3=cos(27°)cos(9°)4\cos^2(9°) - 3 = \frac{\cos(27°)}{\cos(9°)}
  • Second factor (θ=27°\theta = 27°): 4cos2(27°)3=cos(81°)cos(27°)4\cos^2(27°) - 3 = \frac{\cos(81°)}{\cos(27°)}

3. Multiply the Two Factors

(4cos29°3) ⁣(4cos227°3)=cos27°cos9°  ×  cos81°cos27°\left(4\cos^2 9° - 3\right)\!\left(4\cos^2 27° - 3\right) = \frac{\cos 27°}{\cos 9°}\;\times\;\frac{\cos 81°}{\cos 27°}

Notice cos27°\cos 27° cancels out:

=cos81°cos9°= \frac{\cos 81°}{\cos 9°}

4. Convert cos81°\cos 81°

Because 81°=90°9°81° = 90° - 9° we know:

cos81°=sin9°\cos 81° = \sin 9°

Hence

cos81°cos9°=sin9°cos9°=tan9°\frac{\cos 81°}{\cos 9°} = \frac{\sin 9°}{\cos 9°} = \tan 9°

Exactly what we had to show!

Simple Explanation (ELI5)

Think of Trigonometry Like Lego Blocks 🧩

  1. Big Lego Rule (Triple-Angle Rule)
    If you stack three small angles to make a bigger one, their cosines follow a rule: cos(3θ)=4cos3θ3cosθ\cos(3\theta) = 4\cos^3\theta - 3\cos\theta

  2. What We Are Asked To Show
    We have two funny blocks:

    • Block-A → 4cos2(9°)34\cos^2(9°)-3
    • Block-B → 4cos2(27°)34\cos^2(27°)-3 We must prove that putting Block-A and Block-B together (multiplying) magically gives tan(9°)\tan(9°).
  3. Idea in One Line
    Turn each block into a simpler form using the Big Lego Rule, cancel the matching pieces, and you will be left with sine over cosine, which is exactly tan.

That’s all! 🙂

👆 Found this helpful? Get personalized explanations for YOUR questions!

Step-by-Step Solution

Step-by-Step Solution

  1. Use the triple-angle identity

    cos(3θ)=4cos3θ3cosθ\cos(3\theta) = 4\cos^3\theta - 3\cos\theta

    Divide both sides by cosθ\cos\theta:

    4cos2θ3=cos(3θ)cosθ4\cos^2\theta - 3 = \frac{\cos(3\theta)}{\cos\theta}

  2. Rewrite each factor

    • For θ=9°\theta = 9°:

      4cos29°3=cos27°cos9°4\cos^2 9° - 3 = \frac{\cos 27°}{\cos 9°}

    • For θ=27°\theta = 27°:

      4cos227°3=cos81°cos27°4\cos^2 27° - 3 = \frac{\cos 81°}{\cos 27°}

  3. Multiply the factors

    (4cos29°3)(4cos227°3)=(cos27°cos9°)(cos81°cos27°)\left(4\cos^2 9° - 3\right)\left(4\cos^2 27° - 3\right) = \left(\frac{\cos 27°}{\cos 9°}\right)\left(\frac{\cos 81°}{\cos 27°}\right)

    Cancel cos27°\cos 27°:

    =cos81°cos9°= \frac{\cos 81°}{\cos 9°}

  4. Convert cos81°\cos 81° to sin9°\sin 9°

    cos81°=cos(90°9°)=sin9°\cos 81° = \cos(90° - 9°) = \sin 9°

    Hence

    cos81°cos9°=sin9°cos9°=tan9°\frac{\cos 81°}{\cos 9°} = \frac{\sin 9°}{\cos 9°} = \tan 9°

  5. Conclusion

    (4cos29°3)(4cos227°3)=tan9°\boxed{\left(4\cos^2 9° - 3\right)\left(4\cos^2 27° - 3\right) = \tan 9°}

Examples

Example 1

Radio engineers converting between cosine and sine signals using co-function identities.

Example 2

Deriving tan(1°), tan(3°), etc., in exact form by repeated triple-angle manipulation.

Example 3

Optics: relating angles of incidence and refraction when small angle approximations fail.

Example 4

Computer graphics: converting rotation matrices that involve 3θ to simpler θ expressions.

Visual Representation

References

🤔 Have Your Own Question?

Get instant AI explanations in multiple languages with diagrams, examples, and step-by-step solutions!

AI-Powered Explanations
🎯Multiple Languages
📊Interactive Diagrams

No signup required • Try 3 questions free