49. The position vectors of two 1 kg particles, A and B, are given by: rA = (alpha1 t^2 i + alpha2 t j + alpha3 t k) m and rB = (beta1 t i + beta2 t^2 j + beta3 t k) m, respectively. Where: alpha1 = 1 m/s^2, alpha2 = 3n m/s, alpha3 = 2 m/s; beta1 = 2 m/s, beta2 = -1 m/s^2, beta3 = 4p m/s. t is time, and n, p are constants. At t = 1 s, |VA| = |VB|, and the velocities VA and VB are orthogonal to each other. At t = 1 s, the magnitude of angular momentum of particle A with respect to the position of particle B is sqrt(L) kg·m^2/s. The value of L is _____.

4 min read
57 views
Published July 8, 2025
Physics
Mechanics
Kinematics (position & velocity vectors)
Rotational Dynamics (angular momentum)
Vector Algebra (dot & cross products)

💡 Want to ask your own questions?

Get instant explanations with AI • Free trial

Detailed Explanation

1. Position & Velocity Vectors

A particle’s position in 3-D space is described by a vector

r(t)=x(t)i^+y(t)j^+z(t)k^\vec r(t)=x(t)\,\hat i+y(t)\,\hat j+z(t)\,\hat k

The velocity vector is its time derivative

v(t)=drdt\vec v(t)=\frac{d\vec r}{dt}

2. Given data

For particle A (mass 1 kg)

rA(t)=(1t2)i^+(3nt)j^+(2t)k^\vec r_A(t)=\bigl(1\,t^2\bigr)\hat i+\bigl(3n\,t\bigr)\hat j+\bigl(2\,t\bigr)\hat k

For particle B (mass 1 kg)

rB(t)=(2t)i^+(1t2)j^+(4pt)k^\vec r_B(t)=\bigl(2\,t\bigr)\hat i+\bigl(-1\,t^2\bigr)\hat j+\bigl(4p\,t\bigr)\hat k

Here nn and pp are unknown constants we must determine.


3. Velocities

Differentiate w.r.t. tt:

vA(t)=2ti^+3nj^+2k^\vec v_A(t)=2t\,\hat i+3n\,\hat j+2\,\hat k vB(t)=2i^2tj^+4pk^\vec v_B(t)=2\,\hat i-2t\,\hat j+4p\,\hat k

At t=1st=1\,\text{s} we have

vA(1)=2i^+3nj^+2k^\vec v_A(1)=2\,\hat i+3n\,\hat j+2\,\hat k vB(1)=2i^2j^+4pk^\vec v_B(1)=2\,\hat i-2\,\hat j+4p\,\hat k

4. Conditions at t=1t=1\,s

  1. Equal speeds: vA=vB|\vec v_A|=|\vec v_B|
  2. Orthogonality: vAvB=0\vec v_A\cdot\vec v_B=0

These give two equations to find nn and pp.


5. Angular Momentum of A about B

The relative position at any instant is

rAB=rArB\vec r_{AB}=\vec r_A-\vec r_B

Linear momentum of A (mass = 1 kg) is simply pA=vA\vec p_A=\vec v_A.

Angular momentum of A about B is

L=rAB×pA\vec L=\vec r_{AB}\times\vec p_A

Its magnitude is L|\vec L|. The problem says this magnitude equals L\sqrt{L}, so we will eventually square the magnitude to get LL.


6. Logical flow a student should follow

  1. Write velocity vectors at t=1t=1\,s.
  2. Apply equal-speed condition to relate nn and pp.
  3. Apply dot-product-zero condition to get a second relation.
  4. Solve the simultaneous equations for nn and pp.
  5. Compute positions rA\vec r_A and rB\vec r_B at t=1t=1\,s.
  6. Form the relative vector rAB\vec r_{AB}.
  7. Evaluate the cross product rAB×vA\vec r_{AB}\times\vec v_A.
  8. Take its magnitude; square it to match the required form L\sqrt{L}.

Grasping dot products (orthogonality) and cross products (perpendicular area leading to angular momentum) is the chief conceptual hurdle.

Simple Explanation (ELI5)

Imagine two tiny balls moving in space

  1. Where are they?
    Each ball has a little arrow (called a position vector) telling us exactly where it is at any time.
  2. How fast and which way?
    If we look at how that arrow changes, we get another arrow called velocity.
  3. What do we know at 1 second?
    • Both balls are equally fast.
    • Their velocity arrows are at right angles (they make an "L").
  4. Spinning feeling (angular momentum)
    If you stand on one ball and look at how the other one is moving around you, the whirling strength you feel is called angular momentum.
  5. What do we need?
    We must find a number LL so that the whirling strength is L\sqrt{L}.

To do that we plug in the facts (equal speed, right-angle velocities) to discover the mystery constants nn and pp, then use the cross-product rule for angular momentum. Neat algebra and vector tricks give the final answer.

👆 Found this helpful? Get personalized explanations for YOUR questions!

Step-by-Step Solution

Step 1: Write velocities at t=1t=1\,s

vA(1)=2i^+3nj^+2k^\vec v_A(1)=2\,\hat i+3n\,\hat j+2\,\hat k vB(1)=2i^2j^+4pk^\vec v_B(1)=2\,\hat i-2\,\hat j+4p\,\hat k

Step 2: Equal speeds

vA2=vB2|\vec v_A|^2=|\vec v_B|^2 (2)2+(3n)2+(2)2=(2)2+(2)2+(4p)2(2)^2+(3n)^2+(2)^2=(2)^2+(-2)^2+(4p)^2 4+9n2+4=4+4+16p24+9n^2+4=4+4+16p^2 8+9n2=8+16p2    9n2=16p28+9n^2=8+16p^2 \;\Rightarrow\; 9n^2=16p^2 p=34n  or  p=34n\boxed{p=\frac{3}{4}n\;\text{or}\;p=-\frac{3}{4}n}

Step 3: Orthogonality

vAvB=0\vec v_A\cdot\vec v_B=0 (2)(2)+(3n)(2)+(2)(4p)=0(2)(2)+(3n)(-2)+(2)(4p)=0 46n+8p=04-6n+8p=0 p=3n24\boxed{p=\frac{3n-2}{4}}

Step 4: Solve for nn and pp

Equate the two expressions for pp:

  1. 3n24=34n\dfrac{3n-2}{4}=\dfrac{3}{4}n gives 2=0-2=0 (impossible).

  2. 3n24=34n\dfrac{3n-2}{4}=-\dfrac{3}{4}n gives

    3n2=3n    6n=2    n=133n-2=-3n\;\Rightarrow\;6n=2\;\Rightarrow\;\boxed{n=\dfrac{1}{3}}

    p=34(13)=14p=-\frac{3}{4}\left(\frac{1}{3}\right)=\boxed{-\dfrac{1}{4}}


Step 5: Positions at t=1t=1\,s

rA(1)=1i^+3nj^+2k^=1i^+1j^+2k^\vec r_A(1)=1\,\hat i+3n\,\hat j+2\,\hat k=1\,\hat i+1\,\hat j+2\,\hat k rB(1)=2i^1j^+4pk^=2i^1j^1k^\vec r_B(1)=2\,\hat i-1\,\hat j+4p\,\hat k=2\,\hat i-1\,\hat j-1\,\hat k

Step 6: Relative position

rAB=rArB=(1)i^+2j^+3k^\vec r_{AB}=\vec r_A-\vec r_B=(-1)\,\hat i+2\,\hat j+3\,\hat k

Step 7: Cross product

Using pA=vA(1)=2i^+1j^+2k^\vec p_A=\vec v_A(1)=2\,\hat i+1\,\hat j+2\,\hat k (mass = 1 kg):

L=rAB×pA\vec L=\vec r_{AB}\times\vec p_A

[ \vec L=\begin{vmatrix} \hat i & \hat j & \hat k\ -1 & 2 & 3\ 2 & 1 & 2 \end{vmatrix}=1,\hat i+8,\hat j-5,\hat k ]


Step 8: Magnitude and LL

L=12+82+(5)2=1+64+25=90=310|\vec L|=\sqrt{1^2+8^2+(-5)^2}=\sqrt{1+64+25}=\sqrt{90}=3\sqrt{10}

Problem states L=L|\vec L|=\sqrt{L}, hence

L=310    L=(310)2=90\sqrt{L}=3\sqrt{10}\;\Longrightarrow\;L=(3\sqrt{10})^2=90

[ \boxed{L=90} ]

Examples

Example 1

Electrons moving in perpendicular magnetic and electric fields, where orthogonality of velocity components is crucial

Example 2

Satellites with equal orbital speed in different orbital planes (right-angle orbits) leading to interesting angular momentum interactions

Example 3

Designing robotic arms where the end-effector moves with mutually perpendicular velocity components to avoid collisions

Visual Representation

References

🤔 Have Your Own Question?

Get instant AI explanations in multiple languages with diagrams, examples, and step-by-step solutions!

AI-Powered Explanations
🎯Multiple Languages
📊Interactive Diagrams

No signup required • Try 3 questions free