**21.** Let the function \[ f(x) = \begin{cases} -3a x^2 - 2, & x < 1 \\ a^2 + bx, & x \geq 1 \end{cases} \] be differentiable for all \( x \in \mathbb{R} \), where \( a > 1 \), \( b \in \mathbb{R} \). If the area of the region enclosed by \( y = f(x) \) and the line \( y = -20 \) is \( \alpha + \beta \sqrt{3} \), where \( \alpha, \beta \in \mathbb{Z} \), then the value of \( \alpha + \beta \) is ____.

4 min read
100 views
Published July 8, 2025
Mathematics
Calculus
Differential Calculus
Integral Calculus
Piece-wise Functions
Definite Integrals
Areas Under Curves

💡 Want to ask your own questions?

Get instant explanations with AI • Free trial

Detailed Explanation

1. Making the function smooth (differentiable)

For a piece-wise function to be differentiable at the joining point x=1x=1 we need continuity and equal slopes.

  1. Continuity at x=1x=1
    −3a(1)2−2=a2+b-3a(1)^2-2 = a^2 + b
    -3a-2 = a^2 + b \tag{1}

  2. Equal derivatives at x=1x=1
    Left slope: ddx(−3ax2−2)=−6ax\dfrac{d}{dx}(-3ax^2-2) = -6ax so at x=1x=1 it is −6a-6a.
    Right slope: ddx(a2+bx)=b\dfrac{d}{dx}(a^2+bx) = b.
    Equate them:
    b=-6a \tag{2}

Put (2) in (1):
−6a=−3a−2−a2  ⟹  a2−3a+2=0-6a = -3a-2-a^2 \implies a^2-3a+2=0
⇒(a−1)(a−2)=0\Rightarrow (a-1)(a-2)=0
Given a>1  ⇒  a=2a>1 \;\Rightarrow\; a=2 and therefore b=−12b=-12.

So the smooth single curve is

f(x)={−6x2−2,  x<14−12x,  x≥1 f(x)=\begin{cases} -6x^2-2 & ,\; x<1 \\ 4-12x & ,\; x\ge1 \end{cases}

2. Find touch-points with the line y=−20y=-20

Solve f(x)=−20f(x)=-20 in each part.

Left part (x<1x<1):
−6x2−2=−20  ⇒  x2=3  ⇒  x=±3-6x^2-2=-20 \;\Rightarrow\; x^2=3 \;\Rightarrow\; x=\pm\sqrt3
Only x=−3x=-\sqrt3 satisfies x<1x<1.

Right part (x≥1x\ge1):
4−12x=−20  ⇒  x=24-12x=-20 \;\Rightarrow\; x=2

Hence the region is bounded between x=−3x=-\sqrt3 and x=2x=2.

3. Set up definite integrals for area

Above the line y=−20y=-20, the height is f(x)+20f(x)+20.

  1. Quadratic section (−3  →  1-\sqrt3\;\to\;1)
    f(x)+20=−6x2−2+20=18−6x2f(x)+20 = -6x^2-2+20 = 18-6x^2
    A1=∫−31(18−6x2) dxA_1 = \int_{-\sqrt3}^{1} \left(18-6x^2\right)\,dx

  2. Linear section (1  →  21\;\to\;2)
    f(x)+20=4−12x+20=24−12xf(x)+20 = 4-12x+20 = 24-12x
    A2=∫12(24−12x) dxA_2 = \int_{1}^{2} \left(24-12x\right)\,dx

4. Integrate step by step

A1=[18x−2x3]−31=(18⋅1−2⋅1)−(18(−3)−2(−3)3)=16−(−123)=16+123A2=[24x−6x2]12=(48−24)−(24−6)=24−18=6\begin{aligned} A_1 &= \left[18x-2x^3\right]_{-\sqrt3}^{1} = (18\cdot1-2\cdot1) - \left(18(-\sqrt3)-2(-\sqrt3)^3\right) \\[4pt] &= 16 - (-12\sqrt3) = 16+12\sqrt3 \\ A_2 &= \left[24x-6x^2\right]_{1}^{2} = \bigl(48-24\bigr) - \bigl(24-6\bigr) = 24-18 = 6 \end{aligned}

Total area A=A1+A2=(16+123)+6=22+123A=A_1+A_2 = (16+12\sqrt3)+6 = 22+12\sqrt3

Thus α=22\alpha=22, β=12\beta=12 and α+β=34\alpha+\beta=34.

Simple Explanation (ELI5)

Think of two different roads for cars

  1. First road (left side) is a curvy downhill road: y=−6x2−2y=-6x^2-2 for all cars with x<1x<1.
  2. Second road (right side) is a straight sloping road: y=4−12xy=4-12x for all cars with x≥1x\ge 1.

Cars can smoothly shift from the curvy road to the straight road at x=1x=1 without any bump because we fixed the height and slope there.

We now draw a horizontal line y=−20y=-20 (think of water level). Wherever the two roads touch this water, we get the ends of the pool. Between those touch-points the road stays above water, so the space between road and water becomes a nice closed pool of area.

Finally, we add up two easy areas:

  • From left touch-point x=−3x=-\sqrt3 to x=1x=1 (over the curvy road)
  • From x=1x=1 to right touch-point x=2x=2 (over the straight road)

When we add those areas, we get 22+12322+12\sqrt3 square units. Here α=22\alpha=22 and β=12\beta=12, so α+β=34\alpha+\beta=34.

👆 Found this helpful? Get personalized explanations for YOUR questions!

Step-by-Step Solution

Complete Step-by-Step Solution

  1. Impose differentiability at x=1x=1

    Continuity: -3a(1)^2-2 = a^2 + b \;\;\Rightarrow\;\; -3a-2 = a^2+b \tag{1} Equal derivative: -6a = b \tag{2} Substituting (2) in (1): −6a=−3a−2−a2    ⇒    a2−3a+2=0-6a = -3a-2-a^2 \;\;\Rightarrow\;\; a^2-3a+2=0 ⇒(a−1)(a−2)=0    ⇒    a=2  (since a>1)\Rightarrow (a-1)(a-2)=0 \;\;\Rightarrow\;\; a=2\;\text{(since }a>1) b=−6a=−12b = -6a = -12

  2. Write the single smooth function

    -6x^2-2 & ,\; x<1 \\ 4-12x & ,\; x\ge1 \end{cases}$$
  3. Find intersection with the line y=−20y=-20

    (i) Left part: −6x2−2=−20⇒x2=3⇒x=−3  (valid)-6x^2-2 = -20 \Rightarrow x^2 = 3 \Rightarrow x = -\sqrt3 \;\text{(valid)}

    (ii) Right part: 4−12x=−20⇒x=24-12x = -20 \Rightarrow x = 2

  4. Set up the definite integrals for area

    + \int_{1}^{2} \bigl(24-12x\bigr)\,dx$$
  5. Compute each integral

    A_1 &= \left[18x-2x^3\right]_{-\sqrt3}^{1} = (18-2) - \bigl(-18\sqrt3+6\sqrt3\bigr) \\[4pt] &= 16 + 12\sqrt3 \\ A_2 &= \left[24x-6x^2\right]_{1}^{2} = (48-24) - (24-6) = 24-18 = 6 \end{aligned}$$ $$A = A_1 + A_2 = 16+12\sqrt3 + 6 = 22 + 12\sqrt3$$
  6. Extract α,β\alpha,\beta and answer

    α=22,  β=12  ⇒  α+β=34\alpha = 22, \; \beta = 12 \;\Rightarrow\; \alpha + \beta = 34

Final Answer: 3434.

Examples

Example 1

Volume of water stored between a parabolic dam wall and a safety level line can be found with similar integrals.

Example 2

Engineering: Calculating material saved by tapering a beam (piecewise linear and quadratic profiles).

Example 3

Economics: Consumer surplus between a piecewise demand curve and a fixed price line.

Example 4

Physics: Work done when force varies piece-wise with displacement; area under F–x graph.

Example 5

Computer graphics: Shading area between a spline curve and a baseline.

Visual Representation

References

🤔 Have Your Own Question?

Get instant AI explanations in multiple languages with diagrams, examples, and step-by-step solutions!

✨AI-Powered Explanations
🎯Multiple Languages
📊Interactive Diagrams

No signup required • Try 3 questions free