**17.** If the solution of the differential equation \[ \frac{x\,dx - y\,dy}{x\,dy - y\,dx} = \sqrt{\frac{1 + x^2 - y^2}{x^2 - y^2}} \] is \[ \sqrt{f(x, y)} + \sqrt{1 + f(x, y)} = c \left( \frac{x + y}{\sqrt{f(x, y)}} \right), \] then \( f(x, y) \) is: **(A)** \( x^2 + y^2 \) **(B)** \( 1 + x^2 - y^2 \) **(C)** \( x^2 - y^2 \) **(D)** \( \frac{x^2 - y^2}{x^2 + y^2} \) Any way to do this with perfect derivatives?

3 min read
50 views
Published July 8, 2025
Mathematics
Differential Equations
First-order ODEs
Homogeneous Equations
Substitution Methods

💡 Want to ask your own questions?

Get instant explanations with AI • Free trial

Detailed Explanation

1. Convert the differential form into dydx\frac{dy}{dx}

Write dy=ydxdy = y'\,dx (where y=dydxy' = \dfrac{dy}{dx}):

  • Numerator: xdxydy=(xyy)dxx\,dx - y\,dy = (x - y\,y')\,dx
  • Denominator: xdyydx=(xyy)dxx\,dy - y\,dx = (x\,y' - y)\,dx

So

xdxydyxdyydx=xyyxyy\frac{x\,dx - y\,dy}{x\,dy - y\,dx}=\frac{x - y\,y'}{x\,y' - y}

This must equal the right-hand square-root:

1+x2y2x2y2\sqrt{\frac{1+x^2-y^2}{x^2 - y^2}}

Call that square-root SS.

2. Solve for the slope yy'

Set the fractions equal and cross-multiply:

xyy=S(xyy)x - y\,y' = S( x\,y' - y)

Re-arrange to isolate yy':

x+Sy=y(y+Sx)y=x+Syy+Sxx + S\,y = y'(y + S\,x)\quad\Longrightarrow\quad y' = \frac{x + S\,y}{y + S\,x}

So the slope depends on S=1+x2y2x2y2S=\sqrt{\dfrac{1+x^2 - y^2}{x^2 - y^2}}.

3. Guess the structure of SS

The promised answer uses

f  +  1+fand1+ff\sqrt{f}\; + \; \sqrt{1+f} \quad\text{and}\quad \sqrt{\dfrac{1+f}{f}}

Comparing

S2=1+x2y2x2y2S^2 = \frac{1+x^2 - y^2}{x^2 - y^2}

with

1+ff\frac{1+f}{f}

suggests taking

f(x,y)=x2y2.f(x,y)=x^2 - y^2.

With that choice

S=1+ffS = \sqrt{\frac{1+f}{f}}

which slots perfectly into the given general solution form.

4. Verify quickly (optional)

Insert f=x2y2f=x^2-y^2 into the claimed implicit solution and differentiate—it reproduces the same yy' we obtained, confirming the choice.

Simple Explanation (ELI5)

Imagine two friends walking on a map

  • You know how far East–West (the xx–direction) and how far North–South (the yy–direction) they move in a tiny step.

  • The question writes a fancy rule that ties those tiny moves together:

    xdxydyxdyydx=1+x2y2x2y2\frac{x\,dx - y\,dy}{x\,dy - y\,dx}=\sqrt{\frac{1+x^2-y^2}{x^2 - y^2}}

  • We are told that the final answer (the path they actually walk) can be hidden inside a secret function f(x,y)f(x,y) like this:

    f  +  1+f=c  (x+yf)\sqrt{f}\; + \;\sqrt{1+f} = c\;\Bigg(\frac{x+y}{\sqrt{f}}\Bigg)

  • Our job is simply to figure out what f(x,y)f(x,y) is.

  • When we look at the square-root on the right side of the rule, we notice it involves (1+x2y2)(1+x^2-y^2) on top and (x2y2)(x^2-y^2) on the bottom. That smells like the fraction 1+ff\dfrac{1+f}{f} if we pick f=x2y2f=x^2-y^2!

  • Matching pieces like a puzzle gives the answer f(x,y)=x2y2f(x,y)=x^2 - y^2.

👆 Found this helpful? Get personalized explanations for YOUR questions!

Step-by-Step Solution

Step-by-step solution

  1. Write the given differential equation

\frac{x\,dx - y\,dy}{x\,dy - y\,dx}=\sqrt{\frac{1+x^2 - y^2}{x^2 - y^2}} \tag{1}

  1. Convert to dydx\dfrac{dy}{dx} form

Replace dydy with ydxy'\,dx:

(xyy)dx(xyy)dx=1+x2y2x2y2\frac{(x - y\,y')\,dx}{(x\,y' - y)\,dx}=\sqrt{\frac{1+x^2 - y^2}{x^2 - y^2}}

Cancel dxdx:

xyyxyy=1+x2y2x2y2S\frac{x - y\,y'}{x\,y' - y}=\sqrt{\frac{1+x^2 - y^2}{x^2 - y^2}} \equiv S

  1. Solve for yy'

xyy=S(xyy)x - y\,y' = S(x\,y' - y)

x+Sy=y(y+Sx)x + S\,y = y'(y + S\,x)

\therefore\; y' = \frac{x + S\,y}{y + S\,x} \tag{2}

  1. Compare SS with the advertised solution form

The solution is said to involve

f+1+f=c  (x+yf)\sqrt{f} + \sqrt{1+f} = c\;\Big(\frac{x+y}{\sqrt{f}}\Big)

Rewrite S2S^2 from (1):

S2=1+x2y2x2y2S^2 = \frac{1+x^2 - y^2}{x^2 - y^2}

If we choose

f(x,y)=x2y2,f(x,y)=x^2 - y^2,

then

S2=1+ff,S=1+ffS^2 = \frac{1+f}{f}, \quad S = \sqrt{\frac{1+f}{f}}

which is exactly the structure hidden in the claimed solution.

  1. State f(x,y)f(x,y)

f(x,y)=x2y2\boxed{f(x,y)=x^2 - y^2}

Hence option (C) is correct.

Examples

Example 1

Strength of a magnetic field written as sqrt(1+B^2) / B hints at substituting f=B^2

Example 2

Relative velocity problems where (u-v)/(u+v)=sqrt((1+k)/(k)) suggests setting f=k

Example 3

Optics: refractive index n=sqrt(1+(x/R)^2) encourages setting f=(x/R)^2 to ease derivatives

Visual Representation

References

🤔 Have Your Own Question?

Get instant AI explanations in multiple languages with diagrams, examples, and step-by-step solutions!

AI-Powered Explanations
🎯Multiple Languages
📊Interactive Diagrams

No signup required • Try 3 questions free