**12.** Let \( x = x(y) \) be the solution of the differential equation \( y^2 \, dx + \left( x - \frac{1}{y} \right) dy = 0 \). If \( x(1) = 1 \), then \( x\left( \frac{1}{2} \right) \) is: - (1) \( \frac{1}{2} + e \) - (2) \( \frac{3}{2} + e \) - (3) \( 3 - e \) - (4) \( 3 + e \)

3 min read
49 views
Published July 8, 2025
Mathematics
Calculus
Differential Equations
First-order Linear ODE

💡 Want to ask your own questions?

Get instant explanations with AI • Free trial

Detailed Explanation

1. Put in slope form

Divide by dydy (assuming dy0dy \neq 0): [ y^2,\frac{dx}{dy} + \left( x - \frac{1}{y} \right) = 0 \quad\Rightarrow\quad \frac{dx}{dy} = -\frac{x}{y^2} + \frac{1}{y^3}. ]

2. Recognise a linear ODE

It has the form [ \frac{dx}{dy} + P(y),x = Q(y), \quad\text{where}\quad P(y)=\frac{1}{y^2},; Q(y)=\frac{1}{y^3}. ] That is the standard first-order linear type.

3. Integrating factor (IF)

The recipe says [ \text{IF} = e^{\int P(y),dy} = e^{\int \frac{1}{y^2},dy}= e^{-1/y}. ] Multiply everything by the IF: [ e^{-1/y},\frac{dx}{dy} + \frac{1}{y^2}e^{-1/y},x = \frac{1}{y^3}e^{-1/y}. ] Left side collapses into a neat derivative: [ \frac{d}{dy}\Bigl(x,e^{-1/y}\Bigr) = \frac{1}{y^3}e^{-1/y}. ]

4. Integrate both sides

[ x,e^{-1/y} = \int \frac{1}{y^3}e^{-1/y},dy + C. ] A substitution t=1yt = \dfrac1y (so dt=1y2dydt = -\dfrac{1}{y^2}dy) turns the integral into [ -\int t,e^{-t},dt = (t+1)e^{-t} + C = \Bigl(\tfrac1y+1\Bigr)e^{-1/y} + C. ] Thus [ x,e^{-1/y} = \left(1 + \frac{1}{y}\right)e^{-1/y} + C. ] Multiply by e1/ye^{1/y} to isolate xx: [ x(y) = 1 + \frac{1}{y} + C,e^{1/y}. ]

5. Use the initial point (1,1)(1,1)

When y=1y = 1, x=1x = 1: [ 1 = 1 + 1 + C,e \quad\Rightarrow\quad C = -\frac{1}{e}. ] So the explicit solution is [ x(y) = 1 + \frac{1}{y} - e^{\frac{1}{y}-1}. ]

6. Evaluate at y=12y = \dfrac12

Here 1y=2\dfrac{1}{y} = 2: [ x!\left(\tfrac12\right) = 1 + 2 - e^{2-1} = 3 - e. ]

Hence the correct option is (3) 3e3 - e.

Simple Explanation (ELI5)

What’s happening?
Imagine you have a tiny ant walking on a curve. The rule of the curve is hidden inside the little equation
y2dx+(x1y)dy=0y^2\,dx + \left(x - \dfrac{1}{y}\right)dy = 0.
It tells you how xx must change whenever yy changes.

Goal
We already know the ant is at the point (x,y)=(1,1)(x, y) = (1, 1). We want to know where the ant’s xx-coordinate will be when yy shrinks to 12\dfrac12.

Plan

  1. Rewrite the rule so we can see dxdy\dfrac{dx}{dy} (how xx changes with yy).
  2. Notice it is a linear differential equation (very friendly!).
  3. Use the “magic multiplier” called the integrating factor to solve it.
  4. Plug in the known point to find the missing constant.
  5. Finally, substitute y=12y = \dfrac12 and read off xx.

👆 Found this helpful? Get personalized explanations for YOUR questions!

Step-by-Step Solution

Step-by-step Solution

  1. Rewrite in slope form y2dx+(x1y)dy=0y^2\,dx + \Bigl(x - \frac{1}{y}\Bigr)dy = 0 dxdy=xy2+1y3\Rightarrow \frac{dx}{dy} = -\frac{x}{y^2} + \frac{1}{y^3}

  2. Identify P(y) and Q(y) P(y)=1y2,Q(y)=1y3P(y)=\frac{1}{y^2}, \qquad Q(y)=\frac{1}{y^3}

  3. Integrating factor IF=eP(y)dy=e1y2dy=e1/y\text{IF} = e^{\int P(y)dy} = e^{\int \frac{1}{y^2}dy} = e^{-1/y}

  4. Multiply and collapse e1/ydxdy+1y2e1/yx=1y3e1/ye^{-1/y}\,\frac{dx}{dy} + \frac{1}{y^2}e^{-1/y}\,x = \frac{1}{y^3}e^{-1/y} ddy(xe1/y)=1y3e1/y\Rightarrow \frac{d}{dy}\Bigl(x e^{-1/y}\Bigr) = \frac{1}{y^3}e^{-1/y}

  5. Integrate xe1/y=1y3e1/ydy+Cx e^{-1/y} = \int \frac{1}{y^3}e^{-1/y}dy + C Substitution t=1/yt = 1/y:
    xe1/y=tetdt+Cx e^{-1/y} = -\int t e^{-t}dt + C xe1/y=(t+1)et+C=(1y+1)e1/y+Cx e^{-1/y} = (t+1)e^{-t} + C = \Bigl(\frac{1}{y}+1\Bigr)e^{-1/y} + C   x(y)=1+1y+Ce1/y  \boxed{\;x(y) = 1 + \frac{1}{y} + C e^{1/y}\;}

  6. Apply x(1)=1x(1) = 1 1=1+1+Ce1 = 1 + 1 + C e C=1e\Rightarrow C = -\frac{1}{e} x(y)=1+1ye1y1x(y) = 1 + \frac{1}{y} - e^{\frac{1}{y}-1}

  7. Find x ⁣(12)x\!(\tfrac12) x ⁣(12)=1+2e21=3ex\!\left(\tfrac12\right) = 1 + 2 - e^{2-1} = 3 - e

[\boxed{;x!(\tfrac12) = 3 - e;}]

Chosen option: (3) 3e3 - e

Examples

Example 1

Cooling or heating problems where temperature follows dT/dt + kT = kT_env (same linear form).

Example 2

RC circuits: voltage across a capacitor obeys dV/dt + (1/RC)V = (V_source)/(RC).

Example 3

Drug elimination: dC/dt + kC = 0 is the simplest linear ODE.

Example 4

Mixing tank problems: rate of salt change often becomes a linear ODE in time.

Visual Representation

References

🤔 Have Your Own Question?

Get instant AI explanations in multiple languages with diagrams, examples, and step-by-step solutions!

AI-Powered Explanations
🎯Multiple Languages
📊Interactive Diagrams

No signup required • Try 3 questions free