JEE-MAIN EXAMINATION – JANUARY 2025

JEE-MAIN TEST PAPER WITH SOLUTION

Held on Wednesday 29th January 2025, Time: 3:00 PM to 6:00 PM

iExplain - AI powered app for STEM exam doubts and explanations | Product Hunt
JEE Main
Mathematics, Physics, Chemistry
Evening Session
3 hours

Paper Overview

75
Total Questions
0
Correct
0
Incorrect
75
N/A
iExplain doesn't support the question format

Complete Solutions

Q#ExplanationQuestionCorrectSolutionStatus
1Explain
If the set of all aR\mathrm{a} \in \mathbf{R}, for which the equation 2x2+(a5)x+15=3a2 \mathrm{x}^{2}+ (\mathrm{a}-5) \mathrm{x}+15=3 \mathrm{a} has no real root, is the interval (α,β)(\alpha, \beta), and X={xZ:α<x<β}X=\{x \in Z: \alpha<x<\beta\}, then xXx2\sum_{x \in X} x^{2} is equal to
(A) 2109
(B) 2129
(C) 2139
(D) 2119
3
Available
Available
2Explain
If sinx+sin2x=1,x(0,π2)\sin x+\sin ^{2} x=1, x \in\left(0, \frac{\pi}{2}\right), then (cos12x+tan12x)+3(cos10x+tan10x+cos8x+tan8x)+(cos6x+tan6x)\left(\cos ^{12} \mathrm{x}+\tan ^{12} \mathrm{x}\right)+3\left(\cos ^{10} \mathrm{x}+\tan ^{10} \mathrm{x}+\cos ^{8} \mathrm{x}+\tan ^{8} \mathrm{x}\right)+\left(\cos ^{6} x+\tan ^{6} x\right) is equal to
(A) 4
(B) 3
(C) 2
(D) 1
3
Available
Available
3Explain
Let the area enclosed between the curves y=1x2|\mathrm{y}|=1- \mathrm{x}^{2} and x2+y2=1\mathrm{x}^{2}+\mathrm{y}^{2}=1 be α\alpha. If 9α=βπ+γ;β,γ9 \alpha=\beta \pi+\gamma ; \beta, \gamma are integers, then the value of βγ|\beta-\gamma| equals
(A) 27
(B) 18
(C) 15
(D) 33
4
Available
Available
4Explain
If the domain of the function log5(18xx277)\log _{5}\left(18 \mathrm{x}-\mathrm{x}^{2}-77\right) is (α,β)(\alpha, \beta) and the domain of the function log(x1)(2x2+3x2x23x4)\log _{(x-1)}\left(\frac{2 x^{2}+3 x-2}{x^{2}-3 x-4}\right) is (γ,δ)(\gamma, \delta), then α2+β2+γ2\alpha^{2}+\beta^{2}+\gamma^{2} is equal to :
(A) 195
(B) 174
(C) 186
(D) 179
3
Available
Available
5Explain
Let the function f(x)=(x21)x2ax+2+cosxf(x)=\left(x^{2}-1\right)\left|x^{2}-a x+2\right|+\cos |x| be not differentiable at the two points x=α=2\mathrm{x}=\alpha=2 and x=β\mathrm{x}=\beta. Then the distance of the point ( α,β\alpha, \beta ) from the line 12x+5y+10=012 x+5 y+10=0 is equal to :
(A) 3
(B) 4
(C) 2
(D) 5
1
Available
Available
6Explain
Let a straight line L pass through the point P(2,1,3)\mathrm{P}(2,-1,3) and be perpendicular to the lines x12=y+11=z32\frac{\mathrm{x}-1}{2}=\frac{\mathrm{y}+1}{1}=\frac{\mathrm{z}-3}{-2} and x31=y23=z+24\frac{\mathrm{x}-3}{1}=\frac{\mathrm{y}-2}{3}=\frac{\mathrm{z}+2}{4}. If the line L intersects the yz -plane at the point Q , then the distance between the points P and Q is :
(A) 2
(B) 10\sqrt{10}
(C) 3
(D) 232 \sqrt{3}
3
Available
Available
7Explain
Let S=N{0}\mathrm{S}=\mathbf{N} \cup\{0\}. Define a relation R\mathbf{R} from S to R\mathbf{R} by : R={(x,y):logey=xloge(25),x S,yR}\mathbf{R}=\left\{(\mathrm{x}, \mathrm{y}): \log _{\mathrm{e}} \mathrm{y}=\mathrm{x} \log _{\mathrm{e}}\left(\frac{2}{5}\right), \mathrm{x} \in \mathrm{~S}, \mathrm{y} \in \mathbf{R}\right\}. Then, the sum of all the elements in the range of R\mathbf{R} is equal to
(A) 32\frac{3}{2}
(B) 53\frac{5}{3}
(C) 109\frac{10}{9}
(D) 52\frac{5}{2}
2
Available
Available
8Explain
Let the line x+y=1x+y=1 meet the axes of xx and yy at AA and BB, respectively. A right angled triangle AMN is inscribed in the triangle OAB , where O is the origin and the points MM and NN lie on the lines OBO B and AB , respectively. If the area of the triangle AMN is 49\frac{4}{9} of the area of the triangle OAB and AN:NB=λ:1\mathrm{AN}: \mathrm{NB}=\lambda: 1, then the sum of all possible value(s) of is λ\lambda :
(A) 12\frac{1}{2}
(B) 136\frac{13}{6}
(C) 52\frac{5}{2}
(D) 2
4
Available
Available
9Explain
If αx+βy=109\alpha x+\beta y=109 is the equation of the chord of the ellipse x29+y24=1\frac{x^{2}}{9}+\frac{y^{2}}{4}=1, whose mid point is (52,12)\left(\frac{5}{2}, \frac{1}{2}\right), then α+β\alpha+\beta is equal to
(A) 37
(B) 46
(C) 58
(D) 72
3
Available
Available
10Explain
If all the words with or without meaning made using all the letters of the word "KANPUR" are arranged as in a dictionary, then the word at 440th 440^{\text {th }} position in this arrangement, is :
(A) PRNAKU
(B) PRKANU
(C) PRKAUN
(D) PRNAUK
3
Available
Available
11Explain
Let α,β(αβ)\alpha, \beta(\alpha \neq \beta) be the values of m , for which the equations x+y+z=1;x+2y+4z=m\mathrm{x}+\mathrm{y}+\mathrm{z}=1 ; \mathrm{x}+2 \mathrm{y}+4 \mathrm{z}=\mathrm{m} and x+4y+10z=m2x+4 y+10 z=m^{2} have infinitely many solutions. Then the value of n=110(nα+nβ)\sum_{n=1}^{10}\left(n^{\alpha}+n^{\beta}\right) is equal to :
(A) 440
(B) 3080
(C) 3410
(D) 560
1
Available
Available
12Explain
Let A=[aij]\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right] be a matrix of order 3×33 \times 3, with aij=(2)i+j\mathrm{a}_{\mathrm{ij}}=(\sqrt{2})^{\mathrm{i}+\mathrm{j}}. If the sum of all the elements in the third row of A2\mathrm{A}^{2} is α+β2,α,βZ\alpha+\beta \sqrt{2}, \alpha, \beta \in \mathbf{Z}, then α+β\alpha+\beta is equal to
(A) 280
(B) 168
(C) 210
(D) 224
4
Available
Available
13Explain
Let PP be the foot of the perpendicular from the point (1,2,2)(1,2,2) on the line L:x11=y+11=z22\mathrm{L}: \frac{\mathrm{x}-1}{1}=\frac{\mathrm{y}+1}{-1}=\frac{\mathrm{z}-2}{2}. Let the line r=(i^+j^2k^)+λ(i^j^+k^),λR\overrightarrow{\mathrm{r}}=(-\hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}})+\lambda(\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}}), \lambda \in \mathbf{R}, intersect the line L at Q . Then 2(PQ)22(\mathrm{PQ})^{2} is equal to:
(A) 27
(B) 25
(C) 29
(D) 19
1
Available
Available
14Explain
Let a circle CC pass through the points (4,2)(4,2) and (0(0, 2 ), and its centre lie on 3x+2y+2=03 x+2 y+2=0. Then the length of the chord, of the circle C , whose midpoint is (1,2)(1,2), is:
(A) 3\sqrt{3}
(B) 232 \sqrt{3}
(C) 424 \sqrt{2}
(D) 222 \sqrt{2}
2
Available
Available
15Explain
Let A=[aij]\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right] be a 2×22 \times 2 matrix such that aij{0,1}\mathrm{a}_{\mathrm{ij}} \in\{0,1\} for all i and j . Let the random variable X denote the possible values of the determinant of the matrix A. Then, the variance of X is:
(A) 14\frac{1}{4}
(B) 38\frac{3}{8}
(C) 58\frac{5}{8}
(D) 34\frac{3}{4}
2
Available
Available
16Explain
Bag 1 contains 4 white balls and 5 black balls, and Bag 2 contains nn white balls and 3 black balls. One ball is drawn randomly from Bag 1 and transferred to Bag 2. A ball is then drawn randomly from Bag 2. If the probability, that the ball drawn is white, is 29/4529 / 45, then n is equal to:
(A) 3
(B) 4
(C) 5
(D) 6
4
Available
Available
17Explain
The remainder, when 71037^{103} is divided by 23 , is equal to:
(A) 14
(B) 9
(C) 17
(D) 6
1
Available
Available
18Explain
Let f(x)=0xt(t29t+20)dt,1x5f(x)=\int_{0}^{x} t\left(t^{2}-9 t+20\right) d t, 1 \leq x \leq 5. If the range of ff is [α,β][\alpha, \beta], then 4(α+β)4(\alpha+\beta) equals:
(A) 157
(B) 253
(C) 125
(D) 154
1
Available
Available
19Explain
Let â be a unit vector perpendicular to the vectors b=i^2j^+3k^\overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}} and c=2i^+3j^k^\overrightarrow{\mathrm{c}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-\hat{\mathrm{k}}, and makes an angle of cos1(13)\cos ^{-1}\left(-\frac{1}{3}\right) with the vector i^+j^+k^\hat{i}+\hat{j}+\hat{k}. If a^\hat{a} makes an angle of π3\frac{\pi}{3} with the vector i^+αj^+k^\hat{i}+\alpha \hat{j}+\hat{k}, then the value of α\alpha is :
(A) 3-\sqrt{3}
(B) 6\sqrt{6}
(C) 6-\sqrt{6}
(D) 3\sqrt{3}
3
Available
Available
20Explain
If for the solution curve y=f(x)y=f(x) of the differential equation dydx+(tanx)y=2+secx(1+2secx)2\frac{d y}{d x}+(\tan x) y=\frac{2+\sec x}{(1+2 \sec x)^{2}}, x(π2,π2),f(π3)=310x \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right), f\left(\frac{\pi}{3}\right)=\frac{\sqrt{3}}{10}, then f(π4)f\left(\frac{\pi}{4}\right) is equal to:
(A) 93+310(4+3)\frac{9 \sqrt{3}+3}{10(4+\sqrt{3})}
(B) 3+110(4+3)\frac{\sqrt{3}+1}{10(4+\sqrt{3})}
(C) 5322\frac{5-\sqrt{3}}{2 \sqrt{2}}
(D) 4214\frac{4-\sqrt{2}}{14}
4
Available
Available
21Explain
If 240π4(sin4xπ12+[2sinx])dx=2π+α24 \int_{0}^{\frac{\pi}{4}}\left(\sin \left|4 x-\frac{\pi}{12}\right|+[2 \sin x]\right) d x=2 \pi+\alpha, where [][\cdot] denotes the greatest integer function, then α\alpha is equal to ____\_\_\_\_ .
(12)
Available
Available
22Explain
If limt0(01(3x+5)tdx)1t=α5e(85)23\lim _{t \rightarrow 0}\left(\int_{0}^{1}(3 x+5)^{t} d x\right)^{\frac{1}{t}}=\frac{\alpha}{5 e}\left(\frac{8}{5}\right)^{\frac{2}{3}}, then α\alpha is equal to ____\_\_\_\_ .
(64)
Available
Available
23Explain
Let a1,a2,,a2024\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{2024} be an Arithmetic Progression such that a1+(a5+a10+a15++a2020)+a2024=a_{1}+\left(a_{5}+a_{10}+a_{15}+\ldots+a_{2020}\right)+a_{2024}= 2233. Then a1+a2+a3++a2024a_{1}+a_{2}+a_{3}+\ldots+a_{2024} is equal to ____\_\_\_\_ .
(11132)
Available
Available
24Explain
Let integers a,b[3,3]\mathrm{a}, \mathrm{b} \in[-3,3] be such that a+b0\mathrm{a}+\mathrm{b} \neq 0. Then the number of all possible ordered pairs (a,b)(\mathrm{a}, \mathrm{b}), for which zaz+b=1\left|\frac{\mathrm{z}-\mathrm{a}}{\mathrm{z}+\mathrm{b}}\right|=1 and z+1ωω2ωz+ω21ω21z+ω=1,zC\left|\begin{array}{ccc}\mathrm{z}+1 & \omega & \omega^{2} \\ \omega & \mathrm{z}+\omega^{2} & 1 \\ \omega^{2} & 1 & \mathrm{z}+\omega\end{array}\right|=1, \mathrm{z} \in \mathrm{C}, where ω\omega and ω2\omega^{2} are the roots of x2+x+1=0\mathrm{x}^{2}+\mathrm{x}+ 1=0, is equal to ____\_\_\_\_ .
(10)
Available
Available
25Explain
Let y2=12xy^{2}=12 x the parabola and SS be its focus. Let PQ be a focal chord of the parabola such that (SP) (SQ)=1474(\mathrm{SQ})=\frac{147}{4}. Let C be the circle described taking PQ as a diameter. If the equation of a circle C is 64x2+64y2αx643y=β64 x^{2}+64 y^{2}-\alpha x-64 \sqrt{3} y=\beta, then βα\beta-\alpha is equal to ____\_\_\_\_ .
(1328)
Available
Available
26Explain
The difference of temperature in a material can convert heat energy into electrical energy. To harvest the heat energy, the material should have
(A) low thermal conductivity and low electrical conductivity
(B) high thermal conductivity and high electrical conductivity
(C) low thermal conductivity and high electrical conductivity
(D) high thermal conductivity and low electrical conductivity
3
Available
Available
27Explain
Given below are two statements. One is labelled as Assertion (A) and the other is labelled as Reason (R). Assertion (A) : With the increase in the pressure of an ideal gas, the volume falls off more rapidly in an isothermal process in comparison to the adiabatic process. Reason (R) : In isothermal process, PV=\mathrm{PV}= constant, while in adiabatic process PVγ=\mathrm{PV}^{\gamma}= constant. Here γ\gamma is the ratio of specific heats, P is the pressure and V is the volume of the ideal gas. In the light of the above statements, choose the correct answer from the options given below :
(A) Both (A) and (R) are true but (R) is NOT the correct explanation of (A)
(B) (A) is true but (R) is false
(C) Both (A) and (R) are true and (R) is the correct explanation of (A).
(D) (A) is false but (R) is true
4
Available
Available
28Explain
An electric dipole is placed at a distance of 2 cm from an infinite plane sheet having positive charge density σ0\sigma_{0}. Choose the correct option from the following.
(A) Torque on dipole is zero and net force is directed away from the sheet.
(B) Torque on dipole is zero and net force acts towards the sheet.
(C) Potential energy of dipole is minimum and torque is zero.
(D) Potential energy and torque both are maximum
3
Diagram Question
Available
29Explain
In an experiment with photoelectric effect, the stopping potential.
(A) increases with increase in the wavelength of the incident light
(B) increases with increase in the intensity of the incident light
(C) is (1e)\left(\frac{1}{\mathrm{e}}\right) times the maximum kinetic energy of the emitted photoelectrons
(D) decreases with increase in the intensity of the incident light
3
Available
Available
30Explain
A point charge causes an electric flux of 2×104Nm2C1-2 \times 10^{4} \mathrm{Nm}^{2} \mathrm{C}^{-1} to pass through a spherical Gaussian surface of 8.0 cm radius, centred on the charge. The value of the point charge is : (Given ϵ0=8.85×1012C2 N1 m2\epsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2} )
(A) 17.7×108C-17.7 \times 10^{-8} \mathrm{C}
(B) 15.7×108C-15.7 \times 10^{-8} \mathrm{C}
(C) 17.7×108C17.7 \times 10^{-8} \mathrm{C}
(D) 15.7×108C15.7 \times 10^{-8} \mathrm{C}
1
Available
Available
31Explain
A poly-atomic molecule ( Cv=3R,Cp=4R\mathrm{C}_{\mathrm{v}}=3 \mathrm{R}, \mathrm{C}_{\mathrm{p}}=4 \mathrm{R}, where RR is gas constant) goes from phase space point A(PA=105 Pa, VA=4×106 m3)\mathrm{A}\left(\mathrm{P}_{\mathrm{A}}=10^{5} \mathrm{~Pa}, \mathrm{~V}_{\mathrm{A}}=4 \times 10^{-6} \mathrm{~m}^{3}\right) to point B(PB=5×104 Pa, VB=6×106 m3)\mathrm{B}\left(\mathrm{P}_{\mathrm{B}}=5\right. \left.\times 10^{4} \mathrm{~Pa}, \mathrm{~V}_{\mathrm{B}}=6 \times 10^{-6} \mathrm{~m}^{3}\right) to point C(PC=104 Pa\mathrm{C}\left(\mathrm{P}_{\mathrm{C}}=10^{4} \mathrm{~Pa}\right., VC=8×106 m3\mathrm{V}_{\mathrm{C}}=8 \times 10^{-6} \mathrm{~m}^{3} ). A to B is an adiabatic path and B to C is an isothermal path. The net heat absorbed per unit mole by the system is :
(A) 500R(ln3+ln4)500 \mathrm{R}(\ln 3+\ln 4)
(B) 450R(ln4ln3)450 R(\ln 4-\ln 3)
(C) 500Rln2500 R \ln 2
(D) 400Rln4400 R \ln 4
2
Diagram Question
Available
32Explain
Two identical symmetric double convex lenses of focal length ff are cut into two equal parts L1, L2\mathrm{L}_{1}, \mathrm{~L}_{2} by AB plane and L3, L4\mathrm{L}_{3}, \mathrm{~L}_{4} by XY plane as shown in figure respectively. The ratio of focal lengths of lenses L1\mathrm{L}_{1} and L3\mathrm{L}_{3} is
(A) 1: 4
(B) 1: 1
(C) 2: 1
(D) 1: 2
4
Diagram Question
Available
33Explain
A plane electromagnetic wave propagates along the +x+x direction in free space. The components of the electric field, E\overrightarrow{\mathrm{E}} and magnetic field, B\overrightarrow{\mathrm{B}} vectors associated with the wave in Cartesian frame are :
(A) Ey,Bx\mathrm{E}_{\mathrm{y}}, \mathrm{B}_{\mathrm{x}}
(B) Ey,Bz\mathrm{E}_{\mathrm{y}}, \mathrm{B}_{\mathrm{z}}
(C) Ex,ByE_{x}, B_{y}
(D) Ez, By\mathrm{E}_{z}, \mathrm{~B}_{\mathrm{y}}
2
Available
Available
34Explain
Two concave refracting surfaces of equal radii of curvature and refractive index 1.5 face each other in air as shown in figure. A point object O is placed midway, between P and B. The separation between the images of O , formed by each refracting surface is :
(A) 0.214 R
(B) 0.114 R
(C) 0.411 R
(D) 0.124 R
2
Diagram Question
Available
35Explain
Two bodies A and B of equal mass are suspended from two massless springs of spring constant k1k_{1} and k2\mathrm{k}_{2}, respectively. If the bodies oscillate vertically such that their amplitudes are equal, the ratio of the maximum velocity of A to the maximum velocity of BB is
(A) k1k2\sqrt{\frac{\mathrm{k}_{1}}{\mathrm{k}_{2}}}
(B) k1k2\frac{\mathrm{k}_{1}}{\mathrm{k}_{2}}
(C) k2k1\frac{\mathrm{k}_{2}}{\mathrm{k}_{1}}
(D) k2k1\sqrt{\frac{\mathrm{k}_{2}}{\mathrm{k}_{1}}}
1
Available
Available
36Explain
Given below are two statements. One is labelled as Assertion (A) and the other is labelled as Reason (R). Assertion (A) : Three identical spheres of same mass undergo one dimensional motion as shown in figure with initial velocities vA=5 m/s,vB=2 m/s,vC=4 m/s\mathrm{v}_{\mathrm{A}}=5 \mathrm{~m} / \mathrm{s}, \mathrm{v}_{\mathrm{B}}=2 \mathrm{~m} / \mathrm{s}, \mathrm{v}_{\mathrm{C}}=4 \mathrm{~m} / \mathrm{s} If we wait sufficiently long for elastic collision to happen, then vA=4 m/s,vB=2 m/s,vC=5 m/s\mathrm{v}_{\mathrm{A}}=4 \mathrm{~m} / \mathrm{s}, \mathrm{v}_{\mathrm{B}}=2 \mathrm{~m} / \mathrm{s}, \mathrm{v}_{\mathrm{C}}=5 \mathrm{~m} / \mathrm{s} will be the final velocities. Reason (R) : In an elastic collision between identical masses, two objects exchange their velocities. In the light of the above statements, choose the correct answer from the options given below :
(A) Both (A) and (R) are true but (R) is NOT the correct explanation of (A)
(B) (A) is true but (R) is false
(C) Both (A) and (R) are true and (R) is the correct explanation of (A).
(D) (A) is false but (R) is true
4
Diagram Question
Available
37Explain
A sand dropper drops sand of mass m(t)m(t) on a conveyer belt at a rate proportional to the square root of speed (v)(\mathrm{v}) of the belt, i.e. dmdtv\frac{\mathrm{dm}}{\mathrm{dt}} \propto \sqrt{\mathrm{v}}. If P is the power delivered to run the belt at constant speed then which of the following relationship is true?
(A) P2v3P^{2} \propto v^{3}
(B) PV\mathrm{P} \propto \sqrt{\mathrm{V}}
(C) PvP \propto v
(D) P2v5P^{2} \propto v^{5}
4
Available
Available
38Explain
A convex lens mode of glass (refractive index == 1.5) has focal length 24 cm in air. When it is totally immersed in water (refractive index =1.33=1.33 ), its focal length changes to
(A) 72 cm
(B) 96 cm
(C) 24 cm
(D) 48 cm
2
Available
Available
39Explain
A capacitor, C1=6μ F\mathrm{C}_{1}=6 \mu \mathrm{~F} is charged to a potential difference of V0=5 V\mathrm{V}_{0}=5 \mathrm{~V} using a 5 V battery. The battery is removed and another capacitor, C2=12μF\mathrm{C}_{2}=12 \mu \mathrm{F} is inserted in place of the battery. When the switch ' S ' is closed, the charge flows between the capacitors for some time until equilibrium condition is reached. What are the charges ( q1\mathrm{q}_{1} and q2\mathrm{q}_{2} ) on the capacitors C1\mathrm{C}_{1} and C2\mathrm{C}_{2} when equilibrium condition is reached.
(A) q1=15μC,q2=30μC\mathrm{q}_{1}=15 \mu \mathrm{C}, \mathrm{q}_{2}=30 \mu \mathrm{C}
(B) q1=30μC,q2=15μC\mathrm{q}_{1}=30 \mu \mathrm{C}, \mathrm{q}_{2}=15 \mu \mathrm{C}
(C) q1=10μC,q2=20μC\mathrm{q}_{1}=10 \mu \mathrm{C}, \mathrm{q}_{2}=20 \mu \mathrm{C}
(D) q1=20μC,q2=10μC\mathrm{q}_{1}=20 \mu \mathrm{C}, \mathrm{q}_{2}=10 \mu \mathrm{C}
3
Diagram Question
Available
40Explain
Three equal masses m are kept at vertices ( A , B, C) of an equilateral triangle of side aa in free space. At t=0\mathrm{t}=0, they are given an initial velocity VA=V0AC,VB=V0BA\vec{V}_{A}=V_{0} \overrightarrow{A C}, \quad \vec{V}_{B}=V_{0} \overrightarrow{B A} and VC=V0CB\vec{V}_{C}=V_{0} \overrightarrow{C B}. Here, AC,CB\overrightarrow{\mathrm{AC}}, \overrightarrow{\mathrm{CB}} and BA\overrightarrow{\mathrm{BA}} are unit vectors along the edges of the triangle. If the three masses interact gravitationally, then the magnitude of the net angular momentum of the system at the point of collision is :
(A) 12amV0\frac{1}{2} \mathrm{amV}_{0}
(B) 3amV03 \mathrm{a} \mathrm{mV}_{0}
(C) 32amV0\frac{\sqrt{3}}{2} \mathrm{amV}_{0}
(D) 32amV0\frac{3}{2} \mathrm{amV}_{0}
3
Diagram Question
Available
41Explain
Match List-I with List-II. Choose the correct answer from the options given below:
(A) (A)-(I), (B)-(III), (C)-(II), (D)-(IV)
(B) (A)-(II), (B)-(I), (C)-(IV), (D)-(III)
(C) (A)-(IV), (B)-(II), (C)-(III), (D)-(I)
(D) (A)-(II), (B)-(IV), (C)-(I), (D)-(III)
4
Diagram Question
Available
42Explain
Match List-I with List-II. Choose the correct answer from the options given below:
(A) (A)-(III), (B)-(IV), (C)-(I), (D)-(II)
(B) (A)-(III), (B)-(IV), (C)-(II), (D)-(I)
(C) (A)-(I), (B)-(II), (C)-(III), (D)-(IV)
(D) (A)-(III), (B)-(II), (C)-(I), (D)-(IV)
2
Diagram Question
Available
43Explain
The truth table for the circuit given below is :
(A) A=0,B=0,Y=0; A=0,B=1,Y=1; A=1,B=0,Y=1; A=1,B=1,Y=0
(B) A=0,B=0,Y=0; A=1,B=0,Y=0; A=1,B=1,Y=0; A=0,B=1,Y=1
(C) A=0,B=0,Y=0; A=1,B=0,Y=1; A=0,B=1,Y=0; A=1,B=1,Y=0
(D) A=0,B=0,Y=0; A=1,B=1,Y=1; A=1,B=0,Y=1; A=0,B=1,Y=1
1
Diagram Question
Available
44Explain
A cup of coffee cools from 90C90^{\circ} \mathrm{C} to 80C80^{\circ} \mathrm{C} in t minutes when the room temperature is 20C20^{\circ} \mathrm{C}. The time taken by the similar cup of coffee to cool from 80C80^{\circ} \mathrm{C} to 60C60^{\circ} \mathrm{C} at the same room temperature is :
(A) 135t\frac{13}{5} \mathrm{t}
(B) 1013t\frac{10}{13} \mathrm{t}
(C) 1310t\frac{13}{10} \mathrm{t}
(D) 513t\frac{5}{13} \mathrm{t}
1
Available
Available
45Explain
The number of spectral lines emitted by atomic hydrogen that is in the 4th 4^{\text {th }} energy level, is
(A) 6
(B) 0
(C) 3
(D) 1
1
Available
Available
46Explain
The magnetic field inside a 200 turns solenoid of radius 10 cm is 2.9×1042.9 \times 10^{-4} Tesla. If the solenoid carries a current of 0.29 A , then the length of the solenoid is ____\_\_\_\_ πcm\pi \mathrm{cm}.
(8)
Available
Available
47Explain
A parallel plate capacitor consisting of two circular plates of radius 10 cm is being charged by a constant current of 0.15 A . If the rate of change of potential difference between the plates is 7×108V/s7 \times 10^{8} \mathrm{V} / \mathrm{s} then the integer value of the distance between the parallel plates is - (Take, ϵ0=9×1012 F m,π=227\epsilon_{0}=9 \times 10^{-12} \frac{\mathrm{~F}}{\mathrm{~m}}, \pi=\frac{22}{7} ) μm\ldots \mu \mathrm{m} .
(1320)
Available
Available
48Explain
A physical quantity Q is related to four observables a,b,c,da, b, c, d as follows: Q=ab4cdQ=\frac{a b^{4}}{c d} where, a=(60±3)Pa;b=(20±0.1)m\mathrm{a}=(60 \pm 3) \mathrm{Pa} ; \mathrm{b}=(20 \pm 0.1) \mathrm{m}; c=(40±0.2)Nsm2\mathrm{c}=(40 \pm 0.2) \mathrm{Nsm}^{-2} and d=(50±0.1)m\mathrm{d}=(50 \pm 0.1) \mathrm{m}, then the percentage error in Q is X1000\frac{\mathrm{X}}{1000}, where x=\mathrm{x}= ____\_\_\_\_ .
(77)
Available
Available
49Explain
Two planets, A and B are orbiting a common star in circular orbits of radii RAR_{A} and RBR_{B}, respectively, with RB=2RAR_{B}=2 R_{A}. The planet BB is 424 \sqrt{2} times more massive than planet AA. The ratio (LBLA)\left(\frac{L_{B}}{L_{A}}\right) of angular momentum (LB)\left(\mathrm{L}_{\mathrm{B}}\right) of planet B to that of planet A(LA)\mathrm{A}\left(\mathrm{L}_{\mathrm{A}}\right) is closest to integer ____\_\_\_\_ .
(8)
Available
Available
50Explain
Two cars P and Q are moving on a road in the same direction. Acceleration of car PP increases linearly with time whereas car Q moves with a constant acceleration. Both cars cross each other at time t=0\mathrm{t}=0, for the first time. The maximum possible number of crossing(s) (including the crossing at t=0\mathrm{t}=0 ) is ____\_\_\_\_ -
(3)
Available
Available
51Explain
The calculated spin-only magnetic moments of K3[Fe(OH)6]\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{OH})_{6}\right] and K4[Fe(OH)6]\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{OH})_{6}\right] respectively are :
(A) 4.90 and 4.90 B.M.
(B) 5.92 and 4.90 B.M.
(C) 3.87 and 4.90 B.M.
(D) 4.90 and 5.92 B.M.
2
Available
Available
52Explain
For hydrogen like species, which of the following graphs provides the most appropriate representation of E vs Z plot for a constant n ? [E: Energy of the stationary state, Z : atomic number, n=\mathrm{n}= principal quantum number]
2
Diagram Question
Available
53Explain
Given below are two statements : Statement (I) : In partition chromatography, stationary phase is thin film of liquid present in the inert support. Statement (II) : In paper chromatography, the material of paper acts as a stationary phase. In the light of the above statements, choose the correct answer from the options given below :
(A) Both Statement I and Statement II are false
(B) Statement I is true but Statement II is false
(C) Both Statement I and Statement II are true
(D) Statement I is false but Statement II is true
2
Available
Available
54Explain
Identify the essential amino acids from below : (A) Valine (B) Proline (C) Lysine (D) Threonine (E) Tyrosine Choose the correct answer from the options given below :
(A) (A),(C) and (D) only
(B) (A), (C) and (E) only
(C) (B), (C) and (E) only
(D) (C), (D) and (E) only
1
Available
Available
55Explain
Which among the following halides will generate the most stable carbocation in Nucleophillic substitution reaction?
4
Diagram Question
Available
56Explain
Consider the equilibrium\nCO( g)+3H2( g)CH4( g)+H2O( g)\mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) If the pressure applied over the system increases by two fold at constant temperature then (A) Concentration of reactants and products increases. (B) Equilibrium will shift in forward direction. (C) Equilibrium constant increases since concentration of products increases. (D) Equilibrium constant remains unchanged as concentration of reactants and products remain same. Choose the correct answer from the options given below :
(A) (A) and (B) only
(B) (A), (B) and (D) only
(C) (B) and (C) only
(D) (A), (B) and (C) only
1
Available
Available
57Explain
Given below are two statements : Statement (I): NaCl is added to the ice at 0C0^{\circ} \mathrm{C}, present in the ice cream box to prevent the melting of ice cream. Statement (II) : On addition of NaCl to ice at 0C0^{\circ} \mathrm{C}, there is a depression in freezing point. In the light of the above statements, choose the correct answer from the options given below :
(A) Statement I is false but Statement II is true
(B) Both Statement I and Statement II are true
(C) Both Statement I and Statement II are false
(D) Statement I is true but Statement II is false
2
Available
Available
58Explain
Given below are two statements : Statement (I) : On nitration of m-xylene with HNO3,H2SO4\mathrm{HNO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4} followed by oxidation, 4-nitrobenzene-1, 3-dicarboxylic acid is obtained as the major product. Statement (II): CH3\mathrm{CH}_{3} group is o/p-directing whileNO2\mathrm{NO}_{2} group is m-directing group. In the light of the above statements, choose the correct answer from the options given below :
(A) Both Statement I and Statement II are false
(B) Statement I is false but Statement II is true
(C) Both Statement I and Statement II are true
(D) Statement I is true but Statement II is false
3
Available
Available
59Explain
0.1 M solution of KI reacts with excess of H2SO4\mathrm{H}_{2} \mathrm{SO}_{4} and KIO3\mathrm{KIO}_{3} solution. According to equation\n5I+IO3+6H+3I2+3H2O5 \mathrm{I}^{-}+\mathrm{IO}_{3}^{-}+6 \mathrm{H}^{+} \rightarrow 3 \mathrm{I}_{2}+3 \mathrm{H}_{2} \mathrm{O}\nIdentify the correct statements : (A) 200 mL of KI solution reacts with 0.004 mol of KIO3\mathrm{KIO}_{3} (B) 200 mL of KI solution reacts with 0.006 mol of H2SO4\mathrm{H}_{2} \mathrm{SO}_{4} (C) 0.5 L of KI solution produced 0.005 mol of I2\mathrm{I}_{2} (D) Equivalent weight of KIO3\mathrm{KIO}_{3} is equal to ( Molecular weight 5)\left(\frac{\text { Molecular weight }}{5}\right) Choose the correct answer from the options given below:
(A) (A) and (D) only
(B) (B) and (C) only
(C) (A) and (B) only
(D) (C) and (D) only
1
Available
Available
60Explain
Match List-I with List-II: Choose the correct answer from the options given below :
(A) (A)-(III), (B)-(I), (C)-(IV), (D)-(II)
(B) (A)-(III), (B)-(II), (C)-(IV), (D)-(I)
(C) (A)-(IV), (B)-(III), (C)-(II), (D)-(I)
(D) (A)-(II), (B)-(III), (C)-(IV), (D)-(I)
1
Diagram Question
Available
61Explain
O2\mathrm{O}_{2} gas will be evolved as a product of electrolysis of : (A) an aqueous solution of AgNO3\mathrm{AgNO}_{3} using silver electrodes. (B) an aqueous solution of AgNO3\mathrm{AgNO}_{3} using platinum electrodes. (C) a dilute solution of H2SO4\mathrm{H}_{2} \mathrm{SO}_{4} using platinum electrodes. (D) a high concentration solution of H2SO4\mathrm{H}_{2} \mathrm{SO}_{4} using platinum electrodes. Choose the correct answer from the options given below :
(A) (B) and (C) only
(B) (A) and (D) only
(C) (B) and (D) only
(D) (A) and (C) only
1
Available
Available
62Explain
Identify the homoleptic complexes with odd number of d electrons in the central metal. (A) [FeO4]2\left[\mathrm{FeO}_{4}\right]^{2-} (B) [Fe(CN)6]3\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-} (C) [Fe(CN)5NO]2\left[\mathrm{Fe}(\mathrm{CN})_{5} \mathrm{NO}\right]^{2-} (D) [CoCl4]2\left[\mathrm{CoCl}_{4}\right]^{2-} (E) [Co(H2O)3 F3]\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{~F}_{3}\right] Choose the correct answer from the options given below :
(A) (B) and (D) only
(B) (C) and (E) only
(C) (A), (B) and (D) only
(D) (A), (C) and (E) only
1
Available
Available
63Explain
Total number of sigma (σ)(\sigma) ____\_\_\_\_ and pi(π)\operatorname{pi}(\pi) ____\_\_\_\_ bonds respectively present in hex-1-en-4-yne are :
(A) 13 and 3
(B) 11 and 3
(C) 3 and 13
(D) 14 and 3
1
Available
Available
64Explain
If C(\quad \mathrm{C}( diamond )C() \rightarrow \mathrm{C}( graphite )+XkJmol1)+\mathrm{X} \mathrm{kJ} \mathrm{mol}^{-1} C( diamond )+O2( g)CO2( g)+Y kJ mol1\mathrm{C}(\text { diamond })+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{Y} \mathrm{~kJ} \mathrm{~mol}^{-1} C( graphite )+O2( g)CO2( g)+Z kJ mol1\mathrm{C}(\text { graphite })+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{Z} \mathrm{~kJ} \mathrm{~mol}^{-1} At constant temperature. Then
(A) X=Y+ZX=Y+Z
(B) X=Y+Z-X=Y+Z
(C) X=Y+ZX=-Y+Z
(D) X=YZX=Y-Z
4
Available
Available
65Explain
Given below are two statements : Statement (I): It is impossible to specify simultaneously with arbitrary precision, both the linear momentum and the position of a particle. Statement (II) : If the uncertainty in the measurement of position and uncertainty in measurement of momentum are equal for an electron, then the uncertainty in the measurement of velocity is hπ×12 m\geq \sqrt{\frac{\mathrm{h}}{\pi}} \times \frac{1}{2 \mathrm{~m}}. In the light of the above statements, choose the correct answer from the options given below :
(A) Statement I is true but Statement II is false.
(B) Both Statement I and Statement II are true.
(C) Statement I is false but Statement II is true.
(D) Both Statement I and Statement II are false.
2
Available
Available
66Explain
Which one of the following reaction sequences will give an azo dye ?
1
Diagram Question
Available
67Explain
Drug X becomes ineffective after 50% decomposition. The original concentration of drug in a bottle was 16mg/mL16 \mathrm{mg} / \mathrm{mL} which becomes 4 mg/mL\mathrm{mg} / \mathrm{mL} in 12 months. The expiry time of the drug in months is ____\_\_\_\_ . Assume that the decomposition of the drug follows first order kinetics.
(A) 12
(B) 2
(C) 3
(D) 6
4
Available
Available
68Explain
The type of oxide formed by the element among Li,Na,Be,Mg,B\mathrm{Li}, \mathrm{Na}, \mathrm{Be}, \mathrm{Mg}, \mathrm{B} and Al that has the least atomic radius is :
(A) A2O3\mathrm{A}_{2} \mathrm{O}_{3}
(B) AO2\mathrm{AO}_{2}
(C) AO
(D) A2O\mathrm{A}_{2} \mathrm{O}
1
Available
Available
69Explain
First ionisation enthalpy values of first four group 15 elements are given below. Choose the correct value for the element that is a main component of apatite family :
(A) 1012 kJ mol11012 \mathrm{~kJ} \mathrm{~mol}^{-1}
(B) 1402 kJ mol11402 \mathrm{~kJ} \mathrm{~mol}^{-1}
(C) 834 kJ mol1834 \mathrm{~kJ} \mathrm{~mol}^{-1}
(D) 947 kJ mol1947 \mathrm{~kJ} \mathrm{~mol}^{-1}
1
Available
Available
70Explain
Which one of the following, with HBr will give a phenol?
2
Diagram Question
Available
71Explain
Consider the following low-spin complexes K3[Co(NO2)6],K4[Fe(CN)6],K3[Fe(CN)6]\mathrm{K}_{3}\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right], \mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right], \mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right], Cu2[Fe(CN)6]\mathrm{Cu}_{2}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] and Zn2[Fe(CN)6]\mathrm{Zn}_{2}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]. The sum of the spin-only magnetic moment values of complexes having yellow colour is ____\_\_\_\_ B.M. (answer is nearest integer)
(0)
Available
Available
72Explain
Isomeric hydrocarbons \rightarrow negative Baeyer's test (Molecular formula C9H12\mathrm{C}_{9} \mathrm{H}_{12} ). The total number of isomers from above with four different non-aliphatic substitution sites is -
(2)
Available
Available
73Explain
In the Claisen-Schmidt reaction to prepare, dibenzalacetone from 5.3 g benzaldehyde, a total of 3.51 g of product was obtained. The percentage yield in this reaction was ____\_\_\_\_ %\%.
(60)
Available
Available
74Explain
In the sulphur estimation, 0.20 g of a pure organic compound gave 0.40 g of barium sulphate. The percentage of sulphur in the compound is ____\_\_\_\_ ×101\times 10^{-1} %. (Molar mass : O=16, S=32,Ba=137\mathrm{O}=16, \mathrm{~S}=32, \mathrm{Ba}=137 in gmol1\mathrm{g} \mathrm{mol}^{-1} )
(275)
Available
Available
75Explain
Total number of non bonded electrons present in NO2\mathrm{NO}_{2}^{-}ion based on Lewis theory is ____\_\_\_\_ .
(12)
Available
Available