JEE-MAIN EXAMINATION – JANUARY 2025

JEE-MAIN TEST PAPER WITH SOLUTION

Held on Friday 24th January 2025, Time: 3:00 PM to 6:00 PM

iExplain - AI powered app for STEM exam doubts and explanations | Product Hunt
JEE Main
Mathematics, Physics, Chemistry
Evening Session
3 hours

Paper Overview

75
Total Questions
0
Correct
0
Incorrect
75
N/A
iExplain doesn't support the question format

Complete Solutions

Q#ExplanationQuestionCorrectSolutionStatus
1Explain
The equation of the chord, of the ellipse x225+y216=1\frac{x^{2}}{25}+\frac{y^{2}}{16}=1, whose mid-point is (3,1)(3,1) is :
(A) 48x+25y=16948 x+25 y=169
(B) 4x+122y=1344 x+122 y=134
(C) 25x+101y=17625 x+101 y=176
(D) 5x+16y=315 x+16 y=31
1
Available
Available
2Explain
The function f:(,)(,1)f:(-\infty, \infty) \rightarrow(-\infty, 1), defined by f(x)=2x2x2x+2xf(x)=\frac{2^{x}-2^{-x}}{2^{x}+2^{-x}} is :
(A) One-one but not onto
(B) Onto but not one-one
(C) Both one-one and onto
(D) Neither one-one nor onto
1
Available
Available
3Explain
If α>β>γ>0\alpha>\beta>\gamma>0, then the expression cot1{β+(1+β2)(αβ)}+cot1{γ+(1+γ2)(βγ)}\cot ^{-1}\left\{\beta+\frac{\left(1+\beta^{2}\right)}{(\alpha-\beta)}\right\}+\cot ^{-1}\left\{\gamma+\frac{\left(1+\gamma^{2}\right)}{(\beta-\gamma)}\right\} +cot1{α+(1+α2)(γα)}+\cot ^{-1}\left\{\alpha+\frac{\left(1+\alpha^{2}\right)}{(\gamma-\alpha)}\right\} is equal to:
(A) π2(α+β+γ)\frac{\pi}{2}-(\alpha+\beta+\gamma)
(B) 3π3 \pi
(C) 0
(D) π\pi
4
Available
Available
4Explain
Let f:(0,)R\mathrm{f}:(0, \infty) \rightarrow \mathbf{R} be a function which is differentiable at all points of its domain and satisfies the condition x2f(x)=2xf(x)+3x^{2} f^{\prime}(x)=2 x f(x)+3, with f(1)=4f(1)=4. Then 2f(2)2 f(2) is equal to:
(A) 29
(B) 19
(C) 39
(D) 23
3
Available
Available
5Explain
Let A={x(0,π){π2}:log(2/π)sinx+log(2/π)cosx=2}A=\left\{x \in(0, \pi)-\left\{\frac{\pi}{2}\right\}: \log _{(2 / \pi)}|\sin x|+\log _{(2 / \pi)}|\cos x|=2\right\} and B={x0:x(x4)3x2+6=0}B=\{x \geq 0: \sqrt{x}(\sqrt{x}-4)-3|\sqrt{x}-2|+6=0\}. Then n(AB)\mathrm{n}(\mathrm{A} \cup \mathrm{B}) is equal to:
(A) 4
(B) 2
(C) 8
(D) 6
3
Available
Available
6Explain
Let the position vectors of three vertices of a triangle be 4p+q3r,5p+q+2r4 \vec{p}+\vec{q}-3 \vec{r},-5 \vec{p}+\vec{q}+2 \vec{r} \quad and 2pq+2r2 \vec{p}-\vec{q}+2 \vec{r}. If the position vectors of the orthocenter and the circumcenter of the triangle are p+q+r4\frac{\overrightarrow{\mathrm{p}}+\overrightarrow{\mathrm{q}}+\overrightarrow{\mathrm{r}}}{4} and αp+βq+γr\alpha \overrightarrow{\mathrm{p}}+\beta \overrightarrow{\mathrm{q}}+\gamma \overrightarrow{\mathrm{r}} respectively, then α+2β+5γ\alpha+2 \beta+5 \gamma is equal to:
(A) 3
(B) 1
(C) 6
(D) 4
1
Available
Available
7Explain
Let [x][x] denote the gereatest integer function, and let mm and nn respectively be the numbers of the points, where the function f(x)=[x]+x2\mathrm{f}(\mathrm{x})=[\mathrm{x}]+|\mathrm{x}-2|, 2<x<3-2<\mathrm{x}<3, is not continuous and not differentiable. Then m+n\mathrm{m}+\mathrm{n} is equal to:
(A) 6
(B) 9
(C) 8
(D) 7
3
Available
Available
8Explain
Let the points (112,α)\left(\frac{11}{2}, \alpha\right) lie on or inside the triangle with sides x+y=11,x+2y=16x+y=11, x+2 y=16 and 2x+3y=292 x+3 y=29. Then the product of the smallest and the largest values of α\alpha is equal to :
(A) 22
(B) 44
(C) 33
(D) 55
3
Available
Available
9Explain
In an arithmetic progression, if S40=1030\mathrm{S}_{40}=1030 and S12=57\mathrm{S}_{12}=57, then S30S10\mathrm{S}_{30}-\mathrm{S}_{10} is equal to:
(A) 510
(B) 515
(C) 525
(D) 505
2
Available
Available
10Explain
If 7=5+17(5+α)+172(5+2α)+173(5+3α)+7=5+\frac{1}{7}(5+\alpha)+\frac{1}{7^{2}}(5+2 \alpha)+\frac{1}{7^{3}}(5+3 \alpha)+ ____\_\_\_\_ \infty, then the value of α\alpha is:
(A) 1
(B) 67\frac{6}{7}
(C) 6
(D) 17\frac{1}{7}
3
Available
Available
11Explain
If the system of equations x+2y3z=2x+2 y-3 z=2 2x+λy+5z=52 x+\lambda y+5 z=5 14x+3y+μz=3314 x+3 y+\mu z=33 has infinitely many solutions, then λ+μ\lambda+\mu is equal to:
(A) 13
(B) 10
(C) 11
(D) 12
4
Available
Available
12Explain
Let (2,3)(2,3) be the largest open interval in which the function f(x)=2loge(x2)x2+\mathrm{f}(\mathrm{x})=2 \log _{\mathrm{e}}(\mathrm{x}-2)-\mathrm{x}^{2}+ ax +1 is strictly increasing and ( b,c\mathrm{b}, \mathrm{c} ) be the largest open interval, in which the function g(x)=(x1)3(x+2a)2\mathrm{g}(\mathrm{x})=(\mathrm{x}-1)^{3}(\mathrm{x}+2-\mathrm{a})^{2} is strictly decreasing. Then 100(a+bc)100(\mathrm{a}+\mathrm{b}-\mathrm{c}) is equal to:
(A) 280
(B) 360
(C) 420
(D) 160
2
Available
Available
13Explain
Suppose AA and BB are the coefficients of 30th 30^{\text {th }} and 12th 12^{\text {th }} terms respectively in the binomial expansion of (1+x)2n1(1+x)^{2 n-1}. If 2A=5B2 A=5 B, then nn is equal to:
(A) 22
(B) 21
(C) 20
(D) 19
2
Available
Available
14Explain
Let a=3i^j^+2k^,b=a×(i^2k^)\vec{a}=3 \hat{i}-\hat{j}+2 \hat{k}, \vec{b}=\vec{a} \times(\hat{i}-2 \hat{k}) and c=b×k^\vec{c}=\vec{b} \times \hat{k}. Then the projection of c2j^\vec{c}-2 \hat{j} on a\vec{a} is:
(A) 373 \sqrt{7}
(B) 14\sqrt{14}
(C) 2142 \sqrt{14}
(D) 272 \sqrt{7}
3
Available
Available
15Explain
For some a,ba, b, let f(x)=a+sinxx1ba1+sinxxba1b+sinxx,x0f(x)=\left|\begin{array}{ccc}a+\frac{\sin x}{x} & 1 & b \\ a & 1+\frac{\sin x}{x} & b \\ a & 1 & b+\frac{\sin x}{x}\end{array}\right|, \quad x \quad \neq 0, limx0f(x)=λ+μa+vb\lim _{x \rightarrow 0} f(x)=\lambda+\mu a+v b. Then (λ+μ+v)2(\lambda+\mu+v)^{2} is equal to:
(A) 25
(B) 9
(C) 36
(D) 16
4
Available
Available
16Explain
Group A consists of 7 boys and 3 girls, while group BB consists of 6 boys and 5 girls. The number of ways, 4 boys and 4 girls can be invited for a picnic if 5 of them must be from group A and the remaining 3 from group B , is equal to:
(A) 8575
(B) 9100
(C) 8925
(D) 8750
3
Available
Available
17Explain
The area of the region enclosed by the curves y=ex,y=ex1y=e^{x}, y=\left|e^{x}-1\right| and yy-axis is:
(A) 1+loge21+\log _{\mathrm{e}} 2
(B) loge2\log _{e} 2
(C) 2loge212 \log _{\mathrm{e}} 2-1
(D) 1loge21-\log _{\mathrm{e}} 2
4
Available
Available
18Explain
The number of real solution(s) of the equation x2+3x+2=min{x3,x+2}\mathrm{x}^{2}+3 \mathrm{x}+2=\min \{|\mathrm{x}-3|,|\mathrm{x}+2|\} is :
(A) 2
(B) 0
(C) 3
(D) 1
1
Available
Available
19Explain
Let A=[aij]\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right] be a square matrix of order 2 with entries either 0 or 1 . Let E be the event that A is an invertible matrix. Then the probability P(E)\mathrm{P}(\mathrm{E}) is :
(A) 58\frac{5}{8}
(B) 316\frac{3}{16}
(C) 18\frac{1}{8}
(D) 38\frac{3}{8}
4
Available
Available
20Explain
If the equation of the parabola with vertex V(32,3)\mathrm{V}\left(\frac{3}{2}, 3\right) and the directrix x+2y=0\mathrm{x}+2 \mathrm{y}=0 is αx2+βy2γxy30x60y+225=0\alpha x^{2}+\beta y^{2}-\gamma x y-30 x-60 y+225=0, then α+β+γ\alpha+\beta+\gamma is equal to:
(A) 6
(B) 8
(C) 7
(D) 9
4
Available
Available
21Explain
Number of functions f:{1,2,,100}{0,1}f:\{1,2, \ldots, 100\} \rightarrow\{0,1\}, that assign 1 to exactly one of the positive integers less than or equal to 98 , is equal to ____\_\_\_\_ .
(392)
Available
Available
22Explain
Let P be the image of the point Q(7,2,5)\mathrm{Q}(7,-2,5) in the line L:x12=y+13=z4\mathrm{L}: \frac{\mathrm{x}-1}{2}=\frac{\mathrm{y}+1}{3}=\frac{\mathrm{z}}{4} and R(5,p,q)\mathrm{R}(5, \mathrm{p}, \mathrm{q}) be a point on L . Then the square of the area of PQR\triangle \mathrm{PQR} is ____\_\_\_\_
(957)
Available
Available
23Explain
Let y=y(x)y=y(x) be the solution of the differential equation 2cosxdydx=sin2x4ysinx,x(0,π2)2 \cos x \frac{d y}{d x}=\sin 2 x-4 y \sin x, x \in\left(0, \frac{\pi}{2}\right). If y(π3)=0y\left(\frac{\pi}{3}\right)=0, then y(π4)+y(π4)y^{\prime}\left(\frac{\pi}{4}\right)+y\left(\frac{\pi}{4}\right) is equal to ____\_\_\_\_ .
(1)
Available
Available
24Explain
Let H1:x2a2y2 b2=1\mathrm{H}_{1}: \frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}-\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1 and H2:x2 A2+y2 B2=1\mathrm{H}_{2}:-\frac{\mathrm{x}^{2}}{\mathrm{~A}^{2}}+\frac{\mathrm{y}^{2}}{\mathrm{~B}^{2}}=1 be two hyperbolas having length of latus rectums 15215 \sqrt{2} and 12512 \sqrt{5} respectively. Let their eccentricities be e1=52\mathrm{e}_{1}=\sqrt{\frac{5}{2}} and e2\mathrm{e}_{2} respectively. If the product of the lengths of their transverse axes is 10010100 \sqrt{10}, then 25e2225 \mathrm{e}_{2}^{2} is equal to ____\_\_\_\_
(55)
Available
Available
25Explain
If 2x2+5x+9x2+x+1dx=xx2+x+1+αx2+x+1+βlogex+12+x2+x+1+C\int \frac{2 x^{2}+5 x+9}{\sqrt{x^{2}+x+1}} d x=x \sqrt{x^{2}+x+1}+\alpha \sqrt{x^{2}+x+1}+ \beta \log _{\mathrm{e}}\left|\mathrm{x}+\frac{1}{2}+\sqrt{\mathrm{x}^{2}+\mathrm{x}+1}\right|+\mathrm{C}, where C is the constant of integration, then α+2β\alpha+2 \beta is equal to ____\_\_\_\_
(16)
Available
Available
26Explain
Young's double slit interference apparatus is immersed in a liquid of refractive index 1.44. It has slit separation of 1.5 mm . The slits are illuminated by a parallel beam of light whose wavelength in air is 690 nm . The fringe-width on a screen placed behind the plane of slits at a distance of 0.72 m , will be :
(A) 0.23 mm
(B) 0.33 mm
(C) 0.63 mm
(D) 0.46 mm
1
Available
Available
27Explain
Arrange the following in the ascending order of wavelength ( λ\lambda ) : Microwaves ( λ1\lambda_{1} ), Ultraviolet rays ( λ2\lambda_{2} ), Infrared rays ( λ3\lambda_{3} ), X-rays ( λ4\lambda_{4} ) Choose the most appropriate answer from the options given below :-
(A) λ4<λ3<λ2<λ1\lambda_{4}<\lambda_{3}<\lambda_{2}<\lambda_{1}
(B) $ λ3<λ4<λ2<λ1\lambda_{3}<\lambda_{4}<\lambda_{2}<\lambda_{1}
(C) $ λ4<λ2<λ3<λ1\lambda_{4}<\lambda_{2}<\lambda_{3}<\lambda_{1}
(D) $ λ4<λ3<λ1<λ2\lambda_{4}<\lambda_{3}<\lambda_{1}<\lambda_{2}
3
Available
Available
28Explain
Given below are two statements. One is labelled as Assertion (A) and the other is labelled as Reason(R). Assertion (A) : A electron in a certain region of uniform magnetic field is moving with constant velocity in a straight line path. Reason (A) : The magnetic field in that region is along the direction of velocity of the electron. In the light of the above statements, choose the correct answer from the options given below :
(A) (A) is false but (R) is true
(B) Both (A) and (R) are true and (R) is the correct explanation of (A)
(C) Both (A) and (R) are true but (R) is NOT the correct explanation of (A)
(D) (A) is true but (R) is false
2
Available
Available
29Explain
A solid sphere is rolling without slipping on a horizontal plane. The ratio of the linear kinetic energy of the centre of mass of the sphere and rotational kinetic energy is :
(A) 25\frac{2}{5}
(B) 52\frac{5}{2}
(C) 34\frac{3}{4}
(D) 43\frac{4}{3}
2
Available
Available
30Explain
A long straight wire of a circular cross-section with radius ' aa ' carries a steady current II. The current II is a uniformly distributed across this cross-section. The plot of magnitude of magnetic field B with distance rr from the centre of the wire is given by
1
Diagram Question
Available
31Explain
Given below are two statements. One is labelled as Assertion (A) and the other is labelled as Reason(R). Assertion (A) : In an insulated container, a gas is adiabatically shrunk to half of its initial volume. The temperature of the gas decreases. Reason (R) : Free expansion of an ideal gas is an irreversible and an adiabatic process. In the light of the above statement, choose the correct answer from the options given below :
(A) Both (A) and (R) are true and (R) is the correct explanation of (A)
(B) (A) is true but (R) is false
(C) (A) is false but (R) is true
(D) Both (A) and (R) are true but (R) is NOT the correct explanation of (A)
3
Available
Available
32Explain
In the first configuration (1) as shown in the figure, four identical charges (q0)\left(\mathrm{q}_{0}\right) are kept at the corners A,B,CA, B, C and DD of square of side length ' aa '. In the second configuration (2), the same charges are shifted to mid points G,E,H\mathrm{G}, \mathrm{E}, \mathrm{H} and F , of the square, If K=14πε0\mathrm{K}=\frac{1}{4 \pi \varepsilon_{0}}, the difference between the potential energies of configuration (2) and (1) is given by :
(A) Kq02a(422)\frac{K q_{0}^{2}}{a}(4 \sqrt{2}-2)
(B) Kq02a(32)\frac{K q_{0}^{2}}{a}(3-\sqrt{2})
(C) Kq02a(422)\frac{\mathrm{Kq}_{0}^{2}}{\mathrm{a}}(4-2 \sqrt{2})
(D) Kq02a(322)\frac{\mathrm{Kq}_{0}^{2}}{\mathrm{a}}(3 \sqrt{2}-2)
4
Diagram Question
Available
33Explain
The position vector of a moving body at any instant of time is given as r=(5t2i^5tj^)m\vec{r}=\left(5 t^{2} \hat{i}-5 t \hat{j}\right) \mathrm{m}. The magnitude and direction of velocity at t=2 s\mathrm{t}=2 \mathrm{~s} is,
(A) 515 m/s5 \sqrt{15} \mathrm{~m} / \mathrm{s}, making an angle of tan14\tan ^{-1} 4 with -ve Y axis
(B) 515 m/s5 \sqrt{15} \mathrm{~m} / \mathrm{s}, making an angle of tan14\tan ^{-1} 4 with +ve X axis
(C) 517 m/s5 \sqrt{17} \mathrm{~m} / \mathrm{s}, making an angle of tan14\tan ^{-1} 4 with -ve Y axis
(D) 517 m/s5 \sqrt{17} \mathrm{~m} / \mathrm{s}, making an angle of tan14\tan ^{-1} 4 with +ve X axis
3
Available
Available
34Explain
A solid sphere and a hollow sphere of the same mass and of same radius are rolled on an inclined plane. Let the time taken to reach the bottom by the solid sphere and the hollow sphere be t1t_{1} and t2t_{2}, respectively, then
(A) t1<t2t_{1}<t_{2}
(B) t1=t2t_{1}=t_{2}
(C) t1=2t2\mathrm{t}_{1}=2 \mathrm{t}_{2}
(D) t1>t2t_{1}>t_{2}
1
Available
Available
35Explain
Which of the following figure represents the relation between Celsius and Fahrenheit temperatures?
2
Diagram Question
Available
36Explain
N equally spaced charges each of value q , are placed on a circle of radius RR. The circle rotates about its axis with an angular velocity ω\omega as shown in the figure. A bigger Amperian loop B encloses the whole circle where as a smaller Amperian loop A encloses a small segment. The difference between enclosed currents, IAIBI_{A}-I_{B}, for the given Amperian loops is
(A) N22πqω\frac{\mathrm{N}^{2}}{2 \pi} \mathrm{q} \omega
(B) 2πNqω\frac{2 \pi}{N} q \omega
(C) N2πqω\frac{\mathrm{N}}{2 \pi} \mathrm{q} \omega
(D) Nπqω\frac{\mathrm{N}}{\pi} \mathrm{q} \omega
3
Diagram Question
Available
37Explain
In photoelectric effect, the stopping potential ( V0\mathrm{V}_{0} ) v/s\mathrm{v} / \mathrm{s} frequency (v) curve is plotted. ( h is the Planck's constant and ϕ0\phi_{0} is work function of metal) A. V0v/sv\mathrm{V}_{0} \mathrm{v} / \mathrm{s} v is linear B. The slope of V0v/s\mathrm{V}_{0} \mathrm{v} / \mathrm{s} v curve =ϕ0 h=\frac{\phi_{0}}{\mathrm{~h}} C. h constant is related to the slope of V0v/sv\mathrm{V}_{0} \mathrm{v} / \mathrm{s} v line D. The value of electric charge of electron is not required to determine hh using the V0v/svV_{0} v / s v curve. E. The work function can be estimated without knowing the value of h . Choose the correct answer from the options given below :
(A) (A), (B) and (C) only
(B) (C) and (D) only
(C) (A),(C) and (E) only
(D) (D) and (E) only
3
Available
Available
38Explain
The magnitude of heat exchanged by a system for the given cyclic process ABCA (as shown in figure) is (in SI unit)
(A) 10π10 \pi
(B) 5π5 \pi
(C) zero
(D) 40π40 \pi
2
Diagram Question
Available
39Explain
A photograph of a landscape is captured by a drone camera at a height of 18 km . The size of the camera film is 2 cm×2 cm2 \mathrm{~cm} \times 2 \mathrm{~cm} and the area of the landscape photographed is 400 km2400 \mathrm{~km}^{2}. The focal length of the lens in the drone camera is :
(A) 1.8 cm
(B) 2.8 cm
(C) 2.5 cm
(D) 0.9 cm
1
Available
Available
40Explain
The output of the circuit is low (zero) for : X=0,Y=0\mathrm{X}=0, \mathrm{Y}=0, X=0,Y=1X=0, Y=1, X=1,Y=0X=1, Y=0, X=1,Y=1X=1, Y=1 Choose the correct answer from the options given below :
(A) (A), (C) and (D) only
(B) (A), (B) and (C) only
(C) (B), (C) and (D) only
(D) (A), (B) and (D) only
3
Diagram Question
Available
41Explain
The temperature of a body in air falls from 40C40^{\circ} \mathrm{C} to 24C24^{\circ} \mathrm{C} in 4 minutes. The temperature of the air is 16C16^{\circ} \mathrm{C}. The temperature of the body in the next 4 minutes will be :
(A) 143C\frac{14}{3}^{\circ} \mathrm{C}
(B) 283C\frac{28}{3}{ }^{\circ} \mathrm{C}
(C) 563C\frac{56}{3}^{\circ} \mathrm{C}
(D) 423C\frac{42}{3}^{\circ} \mathrm{C}
3
Available
Available
42Explain
The energy EE and momentum pp of a moving body of mass mm are related by some equation. Given that c represents the speed of light, identify the correct equation.
(A) E2=pc2+m2c4\mathrm{E}^{2}=\mathrm{pc}^{2}+\mathrm{m}^{2} \mathrm{c}^{4}
(B) E2=pc2+m2c2\mathrm{E}^{2}=\mathrm{pc}^{2}+\mathrm{m}^{2} \mathrm{c}^{2}
(C) E2=p2c2+m2c2E^{2}=p^{2} c^{2}+m^{2} c^{2}
(D) E2=p2c2+m2c4E^{2}=p^{2} c^{2}+m^{2} c^{4}
4
Available
Available
43Explain
A small uncharged conducting sphere is placed in contact with an identical sphere but having 4×1084 \times 10^{-8} C charge and then removed to a distance such that the force of repulsion between them is 9×103 N9 \times 10^{-3} \mathrm{~N}. The distance between them is (Take 14πε0\frac{1}{4 \pi \varepsilon_{0}} as 9×1099 \times 10^{9} in SI units)
(A) 2 cm
(B) 3 cm
(C) 4 cm
(D) 1 cm
1
Available
Available
44Explain
A particle oscillates along the x -axis according to the law, x(t)=x0sin2(t2)x(t)=x_{0} \sin ^{2}\left(\frac{t}{2}\right) where x0=1 mx_{0}=1 \mathrm{~m}. The kinetic energy ( K ) of the particle as a function of x is correctly represented by the graph.
1
Diagram Question
Available
45Explain
In a Young's double slit experiment, three polarizers are kept as shown in the figure. The transmission axes of P1\mathrm{P}_{1} and P2\mathrm{P}_{2} are orthogonal to each other. The polarizer P3P_{3} covers both the slits with its transmission axis at 4545^{\circ} to those of P1\mathrm{P}_{1} and P2\mathrm{P}_{2}. An unpolarized light of wavelength λ\lambda and intensity I0\mathrm{I}_{0} is incident on P1\mathrm{P}_{1} and P2\mathrm{P}_{2}. The intensity at a point after P3P_{3} where the path difference between the light waves from s1\mathrm{s}_{1} and s2\mathrm{s}_{2} is λ3\frac{\lambda}{3}, is
(A) I02\frac{I_{0}}{2}
(B) I04\frac{\mathrm{I}_{0}}{4}
(C) I0\mathrm{I}_{0}
(D) I03\frac{\mathrm{I}_{0}}{3}
3
Diagram Question
Available
46Explain
A tightly wound long solenoid carries a current of 1.5 A. An electron is executing uniform circular motion inside the solenoid with a time period of 75ns. The number of turns per metre in the solenoid is ____\_\_\_\_ . [Take mass of electron me=9×1031 kg\mathrm{m}_{\mathrm{e}}=9 \times 10^{-31} \mathrm{~kg}, charge of electron qe=1.6×1019C\left|\mathrm{q}_{\mathrm{e}}\right|=1.6 \times 10^{-19} \mathrm{C}, μ0=4π×107 N A2,1 ns=109 s]\left.\mu_{0}=4 \pi \times 10^{-7} \frac{\mathrm{~N}}{\mathrm{~A}^{2}}, 1 \mathrm{~ns}=10^{-9} \mathrm{~s}\right]
(250)
Available
Available
47Explain
A string of length LL is fixed at one end and carries a mass of MM at the other end. The mass makes (3π)\left(\frac{3}{\pi}\right) rotations per second about the vertical axis passing through end of the string as shown. The tension in the string is ____\_\_\_\_ ML.
(36)
Diagram Question
Available
48Explain
The ratio of the power of a light source S1S_{1} to that the light source S2\mathrm{S}_{2} is 2.S12 . \mathrm{S}_{1} is emitting 2×10152 \times 10^{15} photons per second at 600 nm . If the wavelength of the source S2\mathrm{S}_{2} is 300 nm , then the number of photons per second emitted by S2S_{2} is ____\_\_\_\_ ×1014\times 10^{14}.
(5)
Available
Available
49Explain
The increase in pressure required to decrease the volume of a water sample by 0.2%0.2 \% is P×105Nm2\mathrm{P} \times 10^{5} \mathrm{Nm}^{-2}. Bulk modulus of water is 2.15×109Nm22.15 \times 10^{9} \mathrm{Nm}^{-2}. The value of PP is ____\_\_\_\_ .
(43)
Available
Available
50Explain
Acceleration due to gravity on the surface of earth is ' g '. If the diameter of earth is reduced to one third of its original value and mass remains unchanged, then the acceleration due to gravity on the surface of the earth is ____\_\_\_\_ g.
(9)
Available
Available
51Explain
Based on the data given below: ECr2O72/Cr3+0=1.33 VECl2/Cl()0=1.36 V\mathrm{E}_{\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} / \mathrm{Cr}^{3+}}^{0}=1.33 \mathrm{~V} \quad \mathrm{E}_{\mathrm{Cl}_{2} / \mathrm{Cl}^{(-)}}^{0}=1.36 \mathrm{~V} EMnO4/Mn2+0=1.51 VECr3+/Cr0=0.74 V\mathrm{E}_{\mathrm{MnO}_{4}^{-} / \mathrm{Mn}^{2+}}^{0}=1.51 \mathrm{~V} \quad \mathrm{E}_{\mathrm{Cr}^{3+} / \mathrm{Cr}}^{0}=-0.74 \mathrm{~V} the strongest reducing agent is :
(A) Mn2+\mathrm{Mn}^{2+}
(B) Cr
(C) MnO4\mathrm{MnO}_{4}^{-}
(D) Cl\mathrm{Cl}^{-}
2
Available
Available
52Explain
Given below are two statements : {Statement(I) :} {Statement(II) :} In the light of the above statements, choose the correct answer from the options given below :
(A) Both Statement I and Statement II are false
(B) Statement I is false but Statement II is true
(C) Both Statement I and Statement II are true
(D) Statement I is true but Statement II is false
4
Diagram Question
Available
53Explain
For reaction The correct order of set of reagents for the above conversion is :
(A) Br2FeBr3,H2O(Δ),NaOH\mathrm{Br}_{2} \mid \mathrm{FeBr}_{3}, \mathrm{H}_{2} \mathrm{O}(\Delta), \mathrm{NaOH}
(B) H2SO4,Ac2O,Br2,H2O(Δ),NaOH\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{Ac}_{2} \mathrm{O}, \mathrm{Br}_{2}, \mathrm{H}_{2} \mathrm{O}(\Delta), \mathrm{NaOH}
(C) Ac2O,Br2,H2O(Δ),NaOH\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Br}_{2}, \mathrm{H}_{2} \mathrm{O}(\Delta), \mathrm{NaOH}
(D) Ac2O,H2SO4,Br2,NaOH\mathrm{Ac}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{Br}_{2}, \mathrm{NaOH}
2
Diagram Question
Available
54Explain
For hydrogen atom, the orbital/s with lowest energy is/are : A. 4 s, B. 3px3 \mathrm{p}_{\mathrm{x}}, C. 3dx2y23 d_{x^{2}-y^{2}}, D. 3dz23 d_{z^{2}}, E. 4pz4 \mathrm{p}_{\mathrm{z}} Choose the correct answer from the options given below :
(A) (A) and (E) only
(B) (B) only
(C) (A) only
(D) (B), (C) and (D) only
4
Available
Available
55Explain
In the given structure, number of sp and sp2\mathrm{sp}^{2} hybridized carbon atoms present respectively are :
(A) 3 and 6
(B) 3 and 5
(C) 4 and 6
(D) 4 and 5
2
Diagram Question
Available
56Explain
Which of the following mixing of 1 M base and 1 M acid leads to the largest increase in temperature?
(A) 30 mL HCl and 30 mL NaOH
(B) 30 mLCH3COOH30 \mathrm{~mL} \mathrm{CH}_{3} \mathrm{COOH} and 30 mL NaOH
(C) 50 mL HCl and 20 mL NaOH
(D) 45 mLCH3COOH45 \mathrm{~mL} \mathrm{CH}_{3} \mathrm{COOH} and 25 mL NaOH
1
Available
Available
57Explain
Given below are two statements : Statement(I) : Experimentally determined oxygen-oxygen bond lengths in the O3\mathrm{O}_{3} are found to be same and the bond length is greater than that of a O=O\mathrm{O}=\mathrm{O} (double bond) but less than that of a single (OO)(\mathrm{O}-\mathrm{O}) bond. Statement (II) : The strong lone pair-lone pair repulsion between oxygen atoms is solely responsible for the fact that the bond length in ozone is smaller than that of a double bond (O=O)(\mathrm{O}=\mathrm{O}) but more than that of a single bond (OO)(\mathrm{O}-\mathrm{O}). In the light of the above statements, choose the correct answer from the options given below:
(A) Statement I is true but Statement II is false
(B) Both Statement I and Statement II are true
(C) Both Statement I and Statement II are false
(D) Statement I is false but Statement II is true
1
Available
Available
58Explain
Find the compound 'A' from the following reaction sequences. \[ \mathrm{A} \xrightarrow{\text { aqua-regia }} \mathrm{B} \xrightarrow[\text { (2)AcOH }]{\text { (1) } \mathrm{KNO}_{2} \mid \mathrm{NH}_{4} \mathrm{OH}} \text { yellow ppt } \]
(A) ZnS
(B) CoS
(C) MnS
(D) Nis
2
Diagram Question
Available
59Explain
For the reaction, H2( g)+I2( g)2HI(g)\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g}) Attainment of equilibrium is predicted correctly by:
2
Diagram Question
Available
60Explain
Match List-I with List-II. Choose the correct answer from the options given below :
(A) (A)-(III), (B)-(I), (C)-(II), (D)-(IV)
(B) (A)-(III), (B)-(I), (C)-(IV), (D)-(II)
(C) (A)-(IV), (B)-(II), (C)-(III), (D)-(I)
(D) (A)-(II), (B)-(IV), (C)-(I), (D)-(III)
2
Diagram Question
Available
61Explain
The elemental composition of a compound is 54.2%,C,9.2%H54.2 \%, \mathrm{C}, 9.2 \% \mathrm{H} and 36.6%O36.6 \% \mathrm{O}. If the molar mass of the compound is 132 g mol1132 \mathrm{~g} \mathrm{~mol}^{-1}, the molecular formula of the compound is : [Given : The relative atomic mass of C:H:O=\mathrm{C}: \mathrm{H}: \mathrm{O}= 12:1:16]
(A) C4H9O3\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}_{3}
(B) C6H12O6\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}
(C) C6H12O3\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{3}
(D) C4H8O2\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}
3
Available
Available
62Explain
When Ethane-1,2-diamine is added progressively to an aqueous solution of Nickel (II) chloride, the sequence of colour change observed will be :
(A) Pale Blue \rightarrow Blue \rightarrow Green \rightarrow Violet
(B) Pale Blue \rightarrow Blue \rightarrow Violet \rightarrow Green
(C) Green \rightarrow Pale Blue \rightarrow Blue \rightarrow Violet
(D) Violet \rightarrow Blue \rightarrow Pale Blue \rightarrow Green
3
Available
Available
63Explain
The conditions and consequence that favours the t2 g3,eg1\mathrm{t}_{2 \mathrm{~g}}{ }^{3}, \mathrm{e}_{\mathrm{g}}{ }^{1} configuration in a metal complex are :
(A) weak field ligand, high spin complex
(B) strong field ligand, high spin complex
(C) strong field ligand, low spin complex
(D) weak field ligand, low spin complex
1
Available
Available
64Explain
Identify correct statement/s : A. OCH3-\mathrm{OCH}_{3} and NHCOCH3-\mathrm{NHCOCH}_{3} are activating group, B. -CN and -OH are meta directing group, C. -CN and SO3H-\mathrm{SO}_{3} \mathrm{H} are meta directing group, D. Activating groups act as ortho - and para directing groups, E. Halides are activating groups Choose the correct answer from the options given below :
(A) (A), (C) and (D) only
(B) (A), (B) and (E) only
(C) (A) only
(D) (A) and (C) only
1
Available
Available
65Explain
Given below are two statements : Statement (I): The first ionization energy of Pb is greater than that of Sn Statement(II) : The first ionization energy of Ge is greater than that of Si . In the light of the above statements, choose the correct answer from the options given below :
(A) Statement I is true but Statement II is false
(B) Both Statement I and Statement II are false
(C) Statement I is false but Statement II is true
(D) Both Statement I and Statement II are true
1
Available
Available
66Explain
S(g)+32O2( g)SO3( g)+2xkcal\mathrm{S}(\mathrm{g})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{3}(\mathrm{~g})+2 \mathrm{x} \mathrm{kcal} SO2( g)+12O2( g)SO3( g)+ykcal\mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{y} \mathrm{kcal} The heat of formation of SO2( g)\mathrm{SO}_{2}(\mathrm{~g}) is given by :
(A) 2xykcal\frac{2 x}{y} \mathrm{kcal}
(B) y2xkcaly-2 x \mathrm{kcal}
(C) 2x+y2 x+y kcal
(D) x+yx+y kcal
2
Available
Available
67Explain
Match List-I with List-II Choose the correct answer from the options given below :
(A) (A)-(IV), (B)-(III), (C)-(I), (D)-(II)
(B) (A)-(III), (B)-(IV), (C)-(II), (D)-(I)
(C) (A)-(I), (B)-(III), (C)-(II), (D)-(IV)
(D) (A)-(III), (B)-(IV), (C)-(I), (D)-(II)
1
Diagram Question
Available
68Explain
The structure of the major product formed in the following reaction is :
2
Diagram Question
Available
69Explain
Match List-I with List-II. Choose the correct answer from the options given below :
(A) (A)-(III), (B)-(IV), (C)-(II), (D)-(I)
(B) (A)-(III), (B)-(I), (C)-(IV), (D)-(II)
(C) (A)-(IV), (B)-(III), (C)-(II), (D)-(I)
(D) (A)-(III), (B)-(IV), (C)-(I), (D)-(II)
1
Diagram Question
Available
70Explain
The successive 5 ionisation energies of an element are 800,2427,3658,25024800,2427,3658,25024 and 32824 kJ/mol32824 \mathrm{~kJ} / \mathrm{mol}, respectively. By using the above values predict the group in which the above element is present :
(A) Group 2
(B) Group 13
(C) Group 4
(D) Group 14
2
Available
Available
71Explain
The observed and normal masses of compound MX2\mathrm{MX}_{2} are 65.6 and 164 respectively. The percent degree of ionisation of MX2\mathrm{MX}_{2} is ____\_\_\_\_ \%. (Nearest integer)
(75)
Available
Available
72Explain
The possible number of stereoisomers for 5-phenylpent-4-en-2-ol is ____\_\_\_\_ .
(4)
Available
Available
73Explain
Consider a complex reaction taking place in three steps with rate constants k1,k2\mathrm{k}_{1}, \mathrm{k}_{2} and k3\mathrm{k}_{3} respectively. The overall rate constant k is given by the expression k=k1k3k2\mathrm{k}=\sqrt{\frac{\mathrm{k}_{1} \mathrm{k}_{3}}{\mathrm{k}_{2}}}. If the activation energies of the three steps are 60,30 and 10 kJ mol110 \mathrm{~kJ} \mathrm{~mol}^{-1} respectively, then the overall energy of activation in kJmol1\mathrm{kJ} \mathrm{mol}^{-1} is ____\_\_\_\_ . (Nearest integer)
(20)
Available
Available
74Explain
The hydrocarbon ( X ) with molar mass 80 g mol180 \mathrm{~g} \mathrm{~mol}^{-1} and 90%90 \% carbon has ____\_\_\_\_ degree of unsaturation.
(3)
Available
Available
75Explain
In Carius method of estimation of halogen, 0.25 g of an organic compound gave 0.15 g of silver bromide (AgBr). The percentage of Bromine in the organic compound is ____\_\_\_\_ ×101%\times 10^{-1} \% (Nearest integer). (Given : Molar mass of Ag is 108 and Br is 80 g mol180 \mathrm{~g} \mathrm{~mol}^{-1} )
(255)
Available
Available